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1.1
1.1.1

(a) ? defined on Z as a ? b = a − b is not associative since (a − b) − c = [a + (−b)] − c = [a + (−b)] +
(−c) = a + [(−b) + (−c)] = a + [−1(b + c)] = a − (b + c); in general a − (b + c) 6= a − (b − c); e.g.,
1− (1 + 1) = −1 6= 1 = 1− (1− 1)

(b) ? defined on R as a ? b = a+ b+ ab is associative. Observe that

(a ? b) ? c = (a+ b+ ab) ? c = (a+ b+ ab) + c+ (a+ b+ ab)c = a+ b+ c+ ab+ ac+ bc+ abc

and

a ? (b ? c) = a ? (b+ c+ bc) = a+ (b+ c+ bc) + a(b+ c+ bc) = a+ b+ c+ ab+ ac+ bc+ abc

Therefore, (a ? b) ? c = a ? (b ? c).

(c) ? defined on Q as a ? b = a+b
5 is not associative. Observe that

(a ? b) ? c =

(
a+ b

5

)
? c =

a+b
5 + c

5
=
a+ b+ 5c

25

and

a ? (b ? c) = a ?

(
b+ c

5

)
=
a+ b+c

5

5
=

5a+ b+ c

25

In general, a+b+5c
25 6= 5a+b+c

25 ; e.g., if a = 1, b = 0, and c = −1, then (a ? b) ? c = − 4
25 6=

4
25 = a ? (b ? c).

(d) ? defined on Z × Z as (a, b) ? (c, d) = (ad + bc, bd) is associative, but it is tedious to verify and thus proof of
fact is omitted.

(e) ? defined on Q \ {0} as a ? b = a
b is not associative. Observe that

(a ? b) ? c =
(a
b

)
? c =

a
b

c

and

a ? (b ? c) = a ?

(
b

c

)
=
a
b
c

In general,
a
b

c 6=
a
b
c

; e.g., (1 ? 2) ? 3 =
(

1
2

) 1
2

3 = 1
6 , but 1 ? (2 ? 3) = 1 ?

(
2
3

)
= 1

2
3

= 3
2 .
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1.1.2

(a) ? is not commutative on Z; e.g., 1− 2 = −1 6= 2− 1 = 1.

(b) ? defined on R is commutative on R since addition and multiplication are commutative on R, and ? merely
reduces to a combination the two operations.

(c) ? defined on Q is commutative since a ? b = a+b
5 = b+a

5 = b ? a.

(d) ? defined on Z× Z is commutative; proof omitted.

(e) ? defined on Q \ {0} is not commutative on Q \ {0}; e.g., 1 ? 2 = 1
2 6= 2 = 2 ? 1.

1.1.3

Addition of residue classes is associative in Z/nZ because (a+ b) + c = (a+ b) + c = (a+ b) + c = (a+ (b+ c) =
a+ (b+ c) = a+ (b+ c).

1.1.4

Multiplication of residue classes is associative in Z/nZ since (a · b) · c = ab · c = (ab)c = a(bc) = a(bc) = a · (b · c).

1.1.5

Assume for the sake of contradiction that for any integer n > 1, Z/nZ is a group under multiplication of residue classes.
Then observe that for 0 ≤ k ≤ n−1, k·1 = 1·k = k (because ∀ i, j ∈ Z, (k+in)·(1+jn) = k+in+jkn+ijn2 ∈ k).
Therefore, there exists l ∈ {0, 1, ..., n−1} such that 0 · l = 1; i.e., 0 must have an inverse. This, however, is impossible
because for any k ∈ {0, 1, ..., n − 1}, 0 · k = k · 0 = 0. Hence, Z/nZ is not a group under multiplication of residue
classes.

1.1.6

(a) Let S = {x ∈ Q : the denominator of x in lowest terms is odd} Then for any a, b ∈ S, say with a = w
x and

b = y
z , a + b = w

x + y
z = wz+xy

xz . Now, x, z odd implies that xz is odd⇒ (a + b) ∈ S. The additive identity
element 0 = 0

1 ∈ S, and for any a = w
x ∈ S, a−1 = −wx ∈ S. Moreover, since S ⊂ Q, S inherits associativity

of addition. Thus, S is a group.

(b) Let S = {x ∈ Q : the denominator of x in lowest terms is even}∪ {0}. Then 5
6 ,−

1
2 ∈ S, but 5

6 +
(
− 1

2

)
= 1

3 /∈
S ⇒ S is not a group under addition.

(c) Let S = {x ∈ Q : |x| < 1}. Then
∞∑
k=1

( 1
2 )k = 1

1− 1
2

− 1 = 1 /∈ S ⇒ S is not a group under addition.

(d) Let S = {x ∈ Q : |x| ≥ 1} ∪ {0}. Then 3
2 ,−1 ∈ S, but 3

2 + (−1) = 1
2 /∈ S ⇒ S is not a group under addition.

(e) Let S = {x ∈ Q : the denominator of x (in lowest terms) is either 1 or 2}. Then S is a group, and the reasoning
is analogous to that in part (a).

(f) Let S = {x ∈ Q : the denominator is 1, 2, or 3}. Then 3
2 ,−

2
3 ∈ S, but 3

2 +
(
− 2

3

)
= 5

6 /∈ S ⇒ S is not a group
under addition.
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1.1.7

Observe that for any x, y ∈ G,
bx+ yc ≤ x+ y < bx+ yc+ 1

⇒ 0 ≤ x+ y + bx+ yc < 1

⇒ x?y ∈ G. Thus, ? is a well-defined binary operation onG. SinceG ⊂ R, G inherits associativity and commutivity
under addition, which implies ? is associative and commutative on G. Also, if x ∈ G, then x ? 0 = x+ 0−bx+ 0c =
x+ bxc = x ⇒ 0 ∈ G is the identity element. Lastly, if x ∈ G \ {0}, then x ? (1− x) = x+ (1− x)− b1 + xc =
1− 1 = 0⇒ x−1 = (1− x) ∈ G, and 0−1 = 0 ∈ G. ∴ G is an abelian group under ?.
NOTE: G is called the ”real numbers mod 1”.

1.1.8

(a) SinceG ⊂ C,G inherits associativity and commutivity of multiplication. Also, the multiplicative identity 1 ∈ C
is in G (because 11 = 1). Now, if z ∈ G, then for some n ∈ N, zn = 1. Therefore, z · zn−1 = zn = 1 ⇒
z−1 = zn−1; moreover, (zn−1)n = zn(n−1) = (zn)n−1 = 1n−1 = 1 ⇒ z−1 ∈ G. Lastly, if z1, z2 ∈ G, then
there exists n1, n2 ∈ N such that zn1

1 = 1 = zn2
2 ⇒ (z1z2)n1n2 = zn1n2

1 zn1n2
2 = (z1)n2(z2)n1 = 1n21n1 =

1⇒ z1z2 ∈ G. Hence, G is an abelian group under multiplication.

(b) Observe that 1 ∈ G, but 1+1 = 2 /∈ G⇒ G is not closed under addition; thus, G is not a group under addition.

NOTE: G, in part (a), is called the ”nth roots of unity.”

1.1.9

(a) SinceG ⊂ R,G inherits associativity and commutivity of addition. Also, the additive identity 0 = 0+0
√

2 ∈ G.
Now, if a+b

√
2 ∈ G and c+

√
d ∈ G, then a+b

√
2+c+d

√
2 = (a+c)+(b+d)

√
2; since a, b, c, d ∈ Q, this

implies (a+ c) ∈ Q and (b+ d) ∈ Q⇒ (a+ c) + (b+ d)
√

2 ∈ G. And lastly, if a+ b
√

2 ∈ G, then observe
that

(
a+ b

√
2
)

+
(
(−a) + (−b)

√
2
)

= (a+ (−a)) + (b+ (−b))
√

2 = 0⇒ (a+ b
√

2)−1 = (−a) + (−b)
√

2;
now, a, b ∈ Q⇒ (−a), (−b) ∈ Q⇒ (a+ b

√
2)−1 ∈ G. Thus, G is an abelian group under addition.

(b) We now want to show that the nonzero elements ofG form an abelian group under multiplication. First note that
since G \ {0} ⊂ R, G \ {0} inherits associativity and commutivity of multiplication. Also, the multiplicative
identity 1 = 1+0

√
2 ∈ G\{0}. Now, if a+b

√
2inG and c+d

√
2 ∈ G, then (a+b

√
2)(c+d

√
2) = (ac+2bd)+

(ad+bc)
√

2 ∈ G, since a, b, c, d ∈ Q⇒ (ac+2bd), (ad+bc) ∈ Q. And lastly, if a+b
√

2 ∈ G\{0}, then a or b is
nonzero; therefore, (a+b

√
2)· a−b

√
2

a2−2b2 = a2−2b2

a2−2b2 = 1⇒ (a+b
√

2)−1 = a−b
√

2
a2−2b2 , and this is well defined since the

a or b is nonzero implies that the denominator is nonzero. Moreover, a−b
√

2
a2−2b2 =

(
a

a2−2b2

)
+
(

b
a2−2b2

)√
2 ∈ G

since a, b, c, d ∈ Q⇒
(

a
a2−2b2

)
,
(

b
a2−2b2

)
∈ Q. ∴ G \ {0} is an abelian group under multiplication.

1.1.10

Given a finite group G = {x1, x2, ..., xn} with binary operation ?, we can represent it with its Cayley table as shown
below:

? x1 x2 ... xn
x1 a11 a12 ... a1n

x2 a21 a22 ... a2n

...
...

...
. . .

...
xn an1 an2 ... ann
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The Cayley table is symmetric ⇐⇒ ∀ i, j ∈ [n], aij = aji ⇐⇒ xi ? xj = xj ? xi. ∴ G is abelian if and only if its
Cayley table is symmetric.

1.1.11

This problems requires only straightforward computation (boring!); recall, however, that since Z/12Z is an additive

group, for n ∈ N, xn =
n∑
k=1

x. Thus, the orders of the elements are:

|0| = 1 |6| = 2

|1| = 12 |7| = 12

|2| = 6 |8| = 3

|3| = 4 |9| = 4

|4| = 3 |10| = 6

|5| = 12 |11| = 12

1.1.12

Another straightforward computation. Note, however, that this time for n ∈ N, xn =
n∏
k=1

x since (Z/12Z)× is a group

under multplication (of residue classes). Thus, the order of the elements are:

|1| = 1 |7| = 2

| − 1| = 2 | − 7| = 2

|5| = 2 |13| = 1 since 13 ≡ 1 (mod 13)

1.1.13

Omitted because it is analogous to 1.1.11.

1.1.14

Omitted because it is analogous to 1.1.12.

1.1.15

Let e ∈ G be the identity element.

(a1 · ... · an−1an)(a−1
n a−1

n−1 · ...a
−1
1 ) = (a1 · ... · an−1)(ana

−1
n )(a−1

n−1 · ...a
−1
1 )

= (a1 · ... · an−1)e(a−1
n−1 · ... · a

−1
1 )

= (a1 · ... · (an−1a
−1
n−1) · ... · a−1

1 )

= (a1 · ...·)e(·... · a−1
1 )

...

= (a1a
−1
1 )

= e

⇒ (a1 · ... · an−1an)−1 = a−1
n a−1

n−1 · ...a
−1
1
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1.1.16

In this problem, 1 denotes the identity element of G.
Now, if x2 = 1, then this implies |x| ≤ 2. By definition, the order of an element x ∈ G is a positive integer;

therefore, |x| = 1 or |x| = 2.
Conversely, if |x| = 1, then x1 = x = 1⇒ x is the identity element⇒ x2 = x · x = x = 1. If, however, |x| = 2,

then by definition x2 = 1.

1.1.17

Observe that |x| = n⇒ xn = 1⇒ (xn)n−1 = 1n−1 ⇐⇒ xn(n−1) = 1 ⇐⇒ xnxn−1 = 1⇒ x−1 = xn−1.

1.1.18

Trivial.

1.1.19

This problem is not particularly illuminating and tedious, so it is omitted; nonetheless we will take the results for
granted.

1.1.20

Let e be the identity element in G and n ∈ N. Then if |x| = n, then xn = e⇒ (x−1)n = x−n = (xn)−1 = e−1 = e,
since e · e = e. Therefore, |x−1| ≤ n. Substituting x−1 for x, and vice versa, we obtain the result |x−1| = n⇒ |x| ≤
n; hence, for finite order, |x| = |x−1|.

Now, suppose |x| = ∞ and assume for the sake of contradiction that |x−1| < ∞. Then there exists m ∈ N
such that (x−1)m = e ⇐⇒ x−m = e ⇒ xmx−m = xm ⇐⇒ xm−m = xm ⇐⇒ x0 = xm ⇐⇒ e =
xm ⇒ |x| < ∞, a contradiction. Thus, |x| = ∞ ⇒ |x−1| = ∞; subsituting x−1 for x, and vice versa, we see that
|x−1| =∞⇒ |x| =∞.

Consequently, for any element x ∈ G, x and x−1 have the same order.

1.1.21

Let e be the identity element of G. Suppose x ∈ G has order n, where n is an odd number. Then n = 2k− 1 for some
integer k ≥ 1, and we thus have:

xn = e ⇐⇒ x2k−1 = e ⇐⇒ x2kx−1 = e

⇒ x2k = x ⇐⇒ (x2)k = x

1.1.22

Let e be the identity element in G. I claim that for any n ∈ N, y = gxg−1 ⇒ yn = g−1xng. We use induction to
prove this claim.
Base Case: Suppose y = g−1xg. Then y2 = y · y = g−1xg · g−1xg = g−1x(gg−1)xg = g−1xexg = g−1x2g.
Induction Hypothesis: Suppose for n ∈ N, y = g−1xg ⇒ yn = g−1xng.
Induction Step: Observe that yn+1 = yn · y = g−1xng · g−1xg = g−1xn(gg−1)xg = g−1xnexg = g−1xn+1g.

Now, let n ∈ N. Suppose |x| = n. Then (g−1xg)n = g−1xng = g−1eg = e⇒ |g−1xg| ≤ n. On the other hand,
suppose |g−1xg| = n. Then (g−1xg)n = e ⇐⇒ g−1xng = e ⇒ gg−1xngg−1 = geg−1 ⇒ xn = e ⇒ |x| ≤ n.
Therefore, for finite order, |x| = |g−1xg|.

Suppose |x| = ∞, and assume for the sake of contradiction that |g−1xg| < ∞. Then there exists m ∈ N such
that (g−1xg)m = e ⇐⇒ g−1xng = e ⇒ gg−1xngg−1 = geg−1 ⇒ xn = e, which contradicts the assumption
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that |x| = ∞. Therefore, |x| = ∞ ⇒ |g−1xg| = ∞. On the other hand, suppose that |g−1xg| = ∞, and assume
for the sake of contradiction that |x| < ∞. Then there exists m ∈ N such that xm = e. Consequently, (g−1xg)m =
g−1xmg = g−1eg = e, which contradicts the assumption that |g−1xg| =∞. Therefore, |g−1xg| =∞⇒ |x| =∞.

Thus, given any two elements x and g in the group G, |x| = |g−1xg|. Now, set x := ab and g := a. Then
|ab| = |x| = |g−1xg| = |a−1aba| = |ba|; hence we conclude that for any a, b ∈ G, |ab| = |ba|.

1.1.23

Let e be the identity element of G. Then |x| = n = st ⇒ xst = e ⇐⇒ (xs)t = e ⇒ |xs| ≤ t. Now, if
|xs| = k < t, then (xs)k = e ⇐⇒ xsk = e⇒ |x| ≤ sk < st, which contradicts the assumption that |x| = n = st.
∴ |x| = st⇒ |xs| = t.

1.1.24

Let e be the identity element of G. We are told that a, b ∈ G commute. First we use induction to prove that for any
nonnegative integer n, (ab)n = anbn.
First Base Case (n = 0): Observe that (ab)0 = e = a0b0

Second Base Case (n = 1): Observe that (ab)1 = ab = a1b1.
Induction Hypothesis (n = k): Suppose for some positive integer k ≥ 2 we have (ab)k = akbk.
Induction Step (n = k + 1): Observe that (ab)k+1 = (ab)k(ab)1 = akbk(ab) = ak+1bk+1, since the a can commute
with each of the k-many b’s, one at a time.

To prove that for any arbitrary integer n, (ab)n = anbn, we prove the following lemma:

Lemma 1. Let G be a group. If a, b ∈ G commute, then a−1, b−1 ∈ G commute.

Proof. ab = ba ⇐⇒ a−1ab = a−1ba ⇐⇒ b = a−1ba ⇐⇒ b−1b = b−1a−1ba ⇐⇒ e = b−1a−1ba ⇒
(ba)−1 = b−1a−1. On the other hand, by proposition 1, (ab)−1 = b−1a−1 and (ba)−1 = a−1b−1. Therefore,

(ab)−1 = b−1a−1 = (ba)−1 = a−1b−1

That is, a−1b−1 = b−1a−1.

We can now use the above lemma to prove that for any integer n, n (ab)n = anbn. We prove this identity using
induction in a manner completely analogous to that above, with k being subsitituted with −k and with k + 1 being
substituted with −k − 1.

1.1.25

Let e be the identity element of G, and let x ∈ G. Then x2 = e; this implies that x = x−1. Therefore, if a, b ∈ G,
then

ab = a−1b−1 = (ba)−1 = ba

Thus, for any a, b ∈ G, ab = ba; i.e., G is abelian.

1.1.26

Let e be the identity element of the group G with binary operation ?. The since H ⊂ G, H inherits associativity of
elements under ?. Also, we are told that H is closed under ? and under inverses. Thus, h ∈ H ⇒ h−1 ∈ H ⇒
h ? h−1 = e ∈ H . Hence, H is a group under ?.
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1.1.27

Let e be the identity element in G equipped with binary operation ?. Observe that if x ∈ G, then for any integer
n, xn ∈ G (since groups are closed under their binary operation and inverses); thus, {xn : n ∈ Z} ⊂ G. Due to
previous exercise, it thus suffices to show that H is closed under ? and under inverses; i.e., we want to show that
h, k ∈ {xn : n ∈ Z} ⇒ hk ∈ {xn : n ∈ Z} and h−1, k−1 ∈ {xn : n ∈ Z}. Accordingly, let h, k ∈ {xn : n ∈ Z}.
Then there exist integers m,n ∈ Z such that h = xm and k = xn. Therefore, hk = xmxn = xm+n ∈ {xn : n ∈ Z};
moreover, h−1 = (xm)−1 = x−m ∈ {xn : n ∈ Z}, and likewise k−1 = (xn)−1 = x−n{xn : n ∈ Z}.

1.1.28

(a) Recall that is A and B are groups equipped (respectively) with the binary operations ? and �, then A × B =
{(a, b) : a ∈ A ∧ b ∈ B} and for any (a1, b1), (a2, b2) ∈ A × B, (a1, b1)(a2, b2) = (a1 ? a2, b1 � b2).
Let eA and eB be the identity elements (respectively) of A and B. Then note that (eA, eB) ∈ A × B (since
eA ∈ A ∧ eB ∈ B) and observe that for any (a, b) ∈ A×B, (eA, eB)(a, b) = (eA?a, eB �b) = (a, b)⇒ A×B
has an identity element. Also, if (a, b) ∈ A×b, then note that (a−1, b−1) ∈ A×B (since a−1 ∈ A ∧ b−1 ∈ B)
and observe that (a, b)(a−1b−1) = (a?a−1, b�b−1) = (eA, eB)⇒ (a, b)−1 ∈ A×B; i.e.,A×B is closed under
inverses. Moreover, for any (a1, b1), (a2, b2) ∈ A×B, observe that (a1, b1)(a2, b2) = (a1?a2, b1�b2) ∈ A×B
since (a1 ? a2) ∈ A and b1 � b2 ∈ B; i.e., A × B is closed under its binary operation. Lastly, observe that
for any (a1, b1), (a2, b2), (a3, b3) ∈ A × B, then

(
(a1, b1)(a2, b2)

)
(a3, b3) = (a1 ? a2, b1 � b2)(a3, b3) =(

(a1 ? a2) ? a3, (b1 � b2) � b3)
)

=
(
a1(a2 ? a3), b1 � (b2 � b3)

)
= (a1, b1)

(
(a2, b2)(a3, b3)

)
⇒ associativity

holds.

(b) In part (a) we showed that the identity element is (eA, eB).

(c) In part (a) we showed that the inverse of (a, b) is (a−1, b−1)

1.1.29

Let (a1, b1), (a2, b2) ∈ A×B. Then A and B abelian implies that:

(a1, b1)(a2, b2) = (a1 ? a2, b1 � b2) = (a2 ? a1, b2 � b1) = (a2, b2)(a1, b1)

⇒ A×B is an abelian group.

1.1.30

As before we denote the identity element of A as eA and the identity element of B as eB . Observe that

(a, eB)(eA, b) = (a ? eA, eB � b) = (a, b)

and
(eA, b)(a, eA) = (1 ? a, b � eB) = (a, b)

∴ (a, eB) and (eA, b) commute.
Now, if for some n ∈ N, |(a, b)| = n, then n is the smallest positive integer such that

(a, b)n = (eA, eB)

⇒
n∏
k=1

(a, b) = (eA, eB)

⇐⇒
n∏
k=1

(a, eB)(eA, b) = (eA, eB) (4)

Since (a, eB) and (eA, b) commute, (4) implies that n must be so that an = eA and bn = eB ; that is, n must be a
multple of |a| and |b|. Since by definition of order, n must also be the smallest such n, we conclude that n must be the
least common multiple of |a| and |b|.
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1.1.31

Let e be the identity element in G, a finite group of even order, and let t(G) := {g ∈ G : g 6= g−1}. Note that
t(G) = {g ∈ G : |g| > 2} since |g| = 2 ⇒ g2 = e ⇐⇒ g = g−1, and the only element in G with order 1, e, is of
course its own inverse. Now, we want to show that G contains an element of order 2.

Assume for the sake of contradiction that G does not contain any elements of order 2. Then G = e ∪ t(G).
Necessarily t(G) is non-empty since G 3 e and |G| ≥ 2. Now, if g ∈ t(G), then also g−1 ∈ t(G) since (g−1)−1 =
g 6= g−1; i.e., g−1 6= (g−1)−1. Thus for each element g ∈ t(G), we may pair it with its inverse in t(G), which is
distinct from itself (as shown above) and distinct from all other inverses in t(G) (because if g, h ∈ t(G) have the same
inverse a, then ga = e = ha ⇒ g = h). Therefore, t(G) has even order. This, however, is a contradiction since
G = e ∪ t(G) implies that |G| has odd order. Hence, there must be some element ĝ ∈ G such that ĝ /∈ e ∪ t(G); i.e.,
G must contain an element of order 2.

1.1.32

Let e be the identity element. We are told that x ∈ G has order n, and we want to show that {e, x, ..., xn−1} are
distinct.

Assume for the sake of contradiction that not all elements in {e, x, ..., xn−1} are distinct; i.e., suppose there exists
integers i, j such that 0 ≤ i, j ≤ n− 1 such that xi = xk. Without loss of generality we may assume that i > j. Then

xi = xj ⇐⇒ xi · x−j = xj · x−j ⇐⇒ xi−j = e

Now, 0 < i− j < n, which contradicts the assumption that |x| = n.
Thus, each of the n elements in the set {e, x, ..., xn−1} are distinct; moroever, closure of groups implies that

{e, x, ..., xn−1} ⊆ G⇒ |G| ≥ n.

1.1.33

Let e be the identity element of G.

(a) x has odd order implies that there exists a positive integer k such that x2k+1 = e. Now, assume for the sake of
contradiction that there exists and integer i ∈ {1, 2, ..., n− 1} such that xi = x−i. Then

xi = x−i ⇒ xi · xi = x−i · xi ⇐⇒ x2i = e

Necessarily, 2i > 2k + 1 since |x| = 2k + 1 6= 2i, and note that 2i < 2(2k + 1). Consequently, 0 <
2i− (2k + 1) = 2(i− k) + 1 < 2k + 1, which implies:

e = x2i = x2(i−k)+1 · x2k+1 = x2(i−k)+1 · e = x2(i−k)+1

which contradicts the assumption that |x| = 2k + 1. Hence, xi 6= x−i for all i = 1, 2, ..., n− 1.

(b) |x| = n = 2k, for some positive integer k. Now, observe that for an integer i ∈ {1, 2, ..., n− 1},

xi = x−i ⇐⇒ xi · xi = x−i · xi ⇐⇒ x2i = e

Necessarily, 2i ≥ 2k since |x| = 2k, and note that 2i < 2(2k). Now, if 2i > 2k, then 0 < 2i−2k = 2(i−k) <
2k, which implies:

e = x2i = x2(i−k) · x2k = x2(i−k) · e = x2(i−k)

which contradicts the assumption that |x| = 2k. Hence, 2i ≤ 2k ⇒ i = k.

Conversely, observe that if i = k, then

(xi)2 = (xk)2 = x2k = e

⇒ xi = (xi)−1 = x−i
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1.1.34

Let e be the identity element of G. |x| = ∞ ⇒ ∀ n ∈ N, xn 6= e. It thus follows that ∀ n ∈ N, x−n 6= e.
Hence, the only integer m such that xm = e is m = 0. Now, assume for the sake of contradiction that there
exists integers i, j ∈ Z \ {0} such that xi = xj . Without loss of generality we may assume that i > j. Then
xi = xj ⇐⇒ xi−j = e⇒ |x| ≤ i− j <∞, which contradicts the assumption that |x| =∞.

1.1.35

Let e be the identity element of G. We are told that |x| = n < ∞. Let k ∈ Z. Then by the division algorithm, there
exists integers q and r, with 0 ≤ r < n, such that k = nq + r. Hence,

xk = xnq+r = xnq · xr = (xn)q · xr = eq · xr = xr

⇒ xk ∈ {e, x, x2, ..., xn−1}.

1.1.36

We are told that G = {1, a, b, c}, where 1 is the identity element of G, and every element in G has order≤ 3. Suppose
a has order 3. Then a 6= a2, otherwise that would imply that a = e. Thus, a2 = b or a2 = c.

If a2 = b, then b2 = (a2)2 = a4 = a3 · a = e · a = a. Now, consider ca. Then ca 6= e since a−1 = a2 = b 6= c,
ca 6= a since c 6= e, ca 6= c since a 6= e; and lastly, ca 6= b since b = a2, which would imply ca = a2 ⇒ c = a which
is impossible. Thus, ca /∈ G, contradicting closure of groups. Therefore, a2 6= b. An analogous argument shows that
a2 6= c. Hence, a cannot have order 3; i.e., a has an order of 2.

Since we arbitrarily picked a in the above argument, we conclude that b and c also have order 2. Thus, we have the
following table: Thus, it is clear (atleast upon some inspection) that there is only one unique way to finish this table,

G 1 a b c
1 1 a b c
a a 1
b b 1
c c 1

and it is the following configuration:

G 1 a b c
1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

Since the Cayley table is symmetric, by exercise 1.1.10 we deduce that G is abelian.

1.2
1.2.1

(a) The order of elements in D6 are:

|1| = 1 |s| = 2

|r| = 3 |sr| = 2

|r2| = 3 |sr2| = 2
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(b) The order of elements in D8 are:

|1| = 1 |s| = 2

|r| = 4 |sr| = 2

|r2| = 2 |sr2| = 2

|r3| = 4 |sr3| = 2

(c) The order of elements in D10 are:

|1| = 1 |s| = 2

|r| = 5 |sr| = 2

|r2| = 5 |sr2| = 2

|r3| = 5 |sr3| = 2

|r4| = 5 |sr4| = 2

1.2.2

We are given the presentation of the Dihedral group of order 2n:

D2n = 〈r, s|rn = s2 = 1, rs = sr−1〉

Therefore, if x ∈ D2n is not a power of r, then x = sri, where i ∈ {0, 1, ..., n − 1}. Therefore, rx = rsri =
sr−1ri = sri−1, and xr−1 = srir−1 = sri−1. Hence, rx = xr−1.

1.2.3

As before, if x ∈ D2n is not a power of r, then x = sri where i ∈ {0, 1, ..., n− 1}.
Suppose i = 0. Then x = s ⇒ x2 = s2 = 1 ⇒ |x| ≤ 2. Moreover, s 6= 1 and only 1 ∈ D2n has order 1; hence,

|s| = 2.
Now suppose i ∈ {0, 1, ..., n− 1} is nonzero. Then,

x2 = (sri)2 = srisri = sri−1rsri = sri−1sr−1ri = sri−1sri−1

Repeating this algebraic manipulation at most finitely many times (eventually) yields the equality: x2 = sr0sr0 =
s2 = 1⇒ |x| ≤ 2. Again, sri 6= 1 and only 1 ∈ D2n has order 1; hence, |x| = 2.

Observe that s ◦ sr = s2r = r ⇒ {s, sr} generates {r, s} ⊂ D2n. Since {r, s} generates D2n, this implies that
{s, sr} generates D2n.

1.2.4

We are told D2n = D2(2k) for k ≥ 1. Let z = rk. Then since 1 ≥ k < n, z 6= 1; hence, |z| > 1. Now, observe that:

z2 = (rk)2 = r2k = rn = 1

⇒ |z| ≤ 2⇒ |z| = 2.
Observe that if i ∈ {0, 1, ..., n − 1}, then rkri = rk+i = ri+k = rirk; hence, rk commutes with the rotations in

D2n. Also, observe that rks = rk − 1rs = rk−1sr−1 = ... = sr−k; since |rk| = 2 ⇒ (rk)−1 = rk ⇒ sr−k =
s(rk)−1 = srk. Therefore, for any i ∈ {0, 1, ..., n − 1}, rksri = srkri = srk+i = sri+k = srirk. Thus, rk

commutes with every element in D2n.
Now, suppose x ∈ D2n and x commutes with every element in D2n. Then, if x = ri or x = srj for i, j ∈

{0, 1, ..., n− 1}. Suppose x = ri. Then,

ris = ri−1rs = ri−1sr−1 = ... = sr−i
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⇒ sr−i = sri ⇐⇒ r−i = ri ⇐⇒ 1 = r2i ⇒ i = 0 or i = k. Now, suppose x = srj with j ∈ {0, 1, ..., n − 1}.
Then,

(srj)r = r(srj) ⇐⇒ srj+1 = rsrj ⇐⇒ srj+1 = sr−1rj ⇐⇒ srj+1 = srj−1 ⇐⇒ rj+1 = rj−1

⇒ j = 0 since for each j ∈ {1, ..., n − 1}, rj+1 and rj−1 are distinct; however, r = r−1. Therefore, rk is the only
non-identity element in D2n to commute with every other element.

1.2.5

Assume for the sake of contradiction that there exists a non-identity element x ∈ D2n, where n ≥ 3 is odd, which
commutes with every element in D2n. Then, x = ri for i ∈ {1, ..., n− 1} or x = rj for j ∈ {0, 1, ..., n− 1}.

Suppose x = ri. Then, ris = sri and ris = ri−1rs = ri−1sr−1 = ... = sr−i. Hence, sr−i = sri ⇐⇒ ri =
ri ⇐⇒ 1 = r2i. Now, 1 ≤ i < n ⇒ i is not a multiple of n, and n is odd⇒ 2i 6= n; thus, we have a contradiction
since only rkn, where k ∈ Z, equals 1.

Now, suppose x = srj . Then, (srj)r = r(srj) and r(srj) = rsrj = sr−1rj = srj−1

⇒ (srj)r = srj−1 ⇐⇒ srj+1 = srj−1 ⇐⇒ rj+1 = rj−1

⇒ j = 0. Hence, x = s. But then this implies that sr = rs; rs = sr−1 ⇒ sr = sr−1 ⇐⇒ sr2 = s ⇐⇒ r2 = 1
which is impossible since, again, only rkn, where k ∈ Z, equals 1 and n ≥ 3.

Therefore, only the identity commutes with every element in D2n for n ≥ 3 odd.

1.2.6

Since x and y have order 2, this implies that x = x−1 and y = y−1. Morover, since t = xy ⇒ t−1 = (xy)−1 =
y−1x−1. Hence,

tx = (xy)x = xyx = xy−1x−1 = x(xy)−1 = xt−1

1.2.7

We want to show that 〈a, b|a2 = b2 = (ab)n = 1〉 = 〈r, s|rn = s2 = 1, rs = sr−1〉, where a = s and b = sr.
Recall from exercise 1.2.3 that s and sr generate D2n; hence, it suffices to show that the relations of the two group
presentations are equivalent. Observe that

a2 = (ab)n = 1 ⇐⇒ s2 = [s(sr)]n = 1 ⇐⇒ s2 = (s2r)n = 1 ⇐⇒ s2 = rn = 1

and
b2 = 1 ⇐⇒ (sr)2 = 1 ⇐⇒ srsr = 1 ⇐⇒ rs = s1r−1 ⇐⇒ rs = sr−1

since |s| = 2, i.e. s = s−1. Therefore, 〈a, b|a2 = b2 = (ab)n = 1〉, where a = s and b = sr, gives a presentation for
D2n.

1.2.8

Since r0 = rn = 1, |〈r〉| = {1, r1, ..., rn−1} ⇒ |〈r〉| = n.

For problems 1.2.9-1.2.13, we find the order of the group G of rigid motions in R3 of a given Platonic solid by
finding the number of places to which a given face may be sent to, and once a face is fixed, the number of positions to
which a vertex on that face may be sent.
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1.2.9

In this problem, G is the group of rigid motions in R3 of a tetrahedron. A tetrahedron has 4 faces, where each face is
triangle⇒ there are 3 different positions that a vertex on a face may be sent; hence, the order of G is 12.

1.2.10

In this problem, G is the group of rigid motions in R3 of a cube. A cube has 6 faces, where each face is a square
⇒ |G| = 6 · 4 = 24.

1.2.11

In this problem, G is the group of rigid motions in R3 of a octahedron. An octahedron has 8 faces, where each face is
a triangle⇒ |G| = 8 · 3 = 24.

1.2.12

In this problem, G is the group of rigid motions in R3 of a dodecahedron. A dodecahedron has 12 faces, where each
face is a pentagon⇒ |G| = 12 · 5 = 60.

1.2.13

In this problem, G is the group of rigid motions in R3 of a icosahedron. An icosahedron has 202 faces, where each
face is a triangle⇒ |G| = 20 · 3 = 60.

1.2.14

For any positive integer n,
n∑
k=1

1 = n ⇒ 1 generates all positive integers N. Similarly, −1 generates all negative

integers, (1)−1 = (−1), and 1 + (−1) = 0; hence, 〈1〉 = (Z,+).

1.2.15

For any integer m ∈ [n− 1],
m∑
k=1

1 = m, and
n∑
k=1

1 = n ≡ 0 (mod n); hence, 〈1〉 = (Z/nZ,+). The only relation one

would need to know to generate (Z/nZ,+) is n = 0. Hence, the presentation of (Z/nZ,+) is:

〈1|n = 0〉

1.2.16

We want to show that D4 = 〈r, s|r2 = s2 = (rs)2 = 1〉. Recall that D4 = 〈r, s|r2 = s2 = 1, rs = sr−1〉; thus, it
suffices to show that (rs)2 = 1⇒ rs = sr−1. Observe that:

(rs)2 = 1 ⇐⇒ rsrs = 1 ⇐⇒ rs = s−1r−1 = sr−1

since |s| = 2. Hence, D4 = 〈r, s|r2 = s2 = (rs)2 = 1〉.

1.2.17

(a) We are given the group presentation X2n = 〈x, y|xn = y2 = 1, xy = yx2〉, and told that n = 3k for some
k ∈ N. We want to show |X2n| = 6. n = 3k implies that x, x2 ∈ X2n are distinct elements and x, x2 6= 1;
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y2 = 1⇒ y = y−1. Therefore, observe that:

xy = yx2

⇒ yxy = x2

⇒ (yxy)2 = (x2)2

⇐⇒ yxyyxy = x4

⇐⇒ yx2y = x4

⇐⇒ xyy = x4

⇐⇒ x = x4

⇒ 1 = x3

Furthermore, note that

xy = yx2

⇒ xyx−1 = yx

⇐⇒ xyx2 = yx

⇐⇒ xxy = yx

⇐⇒ x2y = yx

∴ X2n = {1, x, x2, y, xy, x2y} ⇒ |X2n| = 6.

Now, letting x = r and y = s, we have the relations r3 = s2 = 1 and rs = sr2 ⇐⇒ rs = sr−1, which are
the exact same relations in D6.

(b) From part (a) we know that xn = x3 = 1, and we are told that gcd(3, n) = 1⇒ ∃x ∈ Z s.t. n = 3x+ 1 or n =
3x+ 2 = 3(x+ 1)− 1⇒ n = 3k ± 1 for some k ∈ Z. Therefore,

xn = 1 ⇐⇒ x3k±1 = 1 ⇐⇒ (x3)kx±1 = 1 ⇐⇒ x±1 = 1

⇒ x = 1. Hence, X2n = {1, y} ⇒ |X2n| = 2.

1.2.18

Omitted.

1.3
1.3.1

σ = (1, 3, 5)(2, 4)

τ = (1, 5)(2, 3)

σ2 = (1, 3, 5)(2, 4)(1, 3, 5)(2, 4)

= (1, 5, 3)

στ = (1, 3, 5)(2, 4)(1, 5)(2, 3)

= (2, 5, 3, 4)

τσ = (1, 5)(2, 3)(1, 3, 5)(2, 4)

= (1, 2, 4, 3)

τ2σ = τ(τσ) = (1, 5)(2, 3)
(
(1, 5)(2, 3)(1, 3, 5)(2, 4)

)
= (1, 5)(2, 3)(1, 2, 4, 3)

= (1, 3, 5)(2, 4)
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1.3.2

Omitted because it analogous to the previous exercise.

1.3.3

Recall that the order of a permutation in Sn is the least common multiple of its cycle lengths in its cycle decomposition.
Therefore,

|σ| = 6 |στ | = 4

|τ | = 2 |τσ| = 4

|σ2| = 3 |τ2σ| = 6

1.3.4

(a) S3 = {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}. Thus,

|(1)| = 1 |(2, 3)| = 2

|(1, 2)| = 2 |(1, 2, 3) = 3

|(1, 3)| = 2 |(1, 3, 2)| = 3

(b) S4 = {(1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2, 3), (1, 3, 2),
(1, 2, 4), (1, 4, 2), (2, 3, 4), (2, 4, 3), (1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)}.
Thus,

|(1)| = 1 |(1, 3)(2, 4)| = 2 |(2, 3, 4)| = 3

|(1, 2)| = 2 |(1, 4)(2, 3)| = 2 |(2, 4, 3)| = 3

|(1, 3)| = 2 |(1, 2, 3)| = 3 |(1, 2, 3, 4)| = 4

|(1, 4)| = 2 |(1, 3, 2)| = 3 |(1, 2, 4, 3)| = 4

|(2, 3)| = 2 |(1, 2, 4)| = 3 |(1, 3, 2, 4)| = 4

|(2, 4)| = 2 |(1, 4, 2)| = 3 |(1, 3, 4, 2)| = 4

|(3, 4)| = 2 |(1, 3, 4)| = 3 |(1, 4, 2, 3)| = 4

|(1, 2)(3, 4)| = 2 |(1, 4, 3) = 3 |(1, 4, 3, 2)| = 4

1.3.5

|(1, 12, 8, 10, 4)(2, 13)(5, 11, 7)(6, 9)| = lcm(5, 2, 3) = 5·2·3
gcd(5,2,3) = 30.

1.3.6

The elements of order 4 in S4 (in cycle decomposition) are: (1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3),
(1, 4, 3, 2).

1.3.7

The elements of order 2 in S4 (in cycle decomposition) are: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2)(3, 4),
(1, 3)(2, 4), (1, 4)(2, 3).

1.3.8

Let Ω = {1, 2, 3, ...}. Then SΩ is the set of all bijections from N to N. Let σ ∈ SΩ. Then σ maps 1 to m, where
m may be any arbitrary natural number. Since there are infinitely many options for σ to map 1, there are infinitely
permutations in SΩ ⇒ SΩ is an infinite group.
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1.3.9

Ommitted because it is tedious and a result from exercises 1.3.11 can be used to easily find such powers.

1.3.10

Given the m−cycle σ = (a1, a2, ..., am), we want to show that for all i ∈ {1, 2, ...,m}, σi(ak) = ak+i mod m, with
a0 := am (i.e., k + i is replaced with the smallest positive residue class mod m). We prove this by induction:
Base Case: σ1 = σ = (a1, a2, ..., am)⇒ σ1(ak) = ak+1 mod m, with a0 := am.
Induction Hypothesis: Suppose that for some i ∈ {1, 2, ...,m− 1}, σi(ak) = ak+i mod m, with a0 := am.
Induction Step: Observe that σi+1(ak) = σi

(
σ1(ak)

)
= σi(ak+1 mod m) = ak+1+i mod m, with a0 := am.

Therefore, σi(ak) = ak+i mod m, with a0 := am. Hence, for 1 ≤ i ≤ m− 1, σi(a1) = a1+i mod m = a1+i 6= a1 ⇒
|σ| > m − 1; yet, σm(a1) = a1+m mod m = a1, σm(a2) = a2+m mod m = a2,..., σm(am) = am+m mod m = a0 =
am ⇒ |σ| ≤ m. Thus, |σ| = m.

1.3.11

Let e be the identity permutation. Given that σ = (1, 2, ...,m), we want to prove that σi is an m−cycle if and only if
gcd(i,m) = 1.

(⇒) We prove by contrapositive; i.e., we show that if gcd(i,m) 6= 1, then σi cannot be an m−cycle. Suppose
gcd(i,m) = d > 1. Then there exists x, y ∈ N such that i = xd and m = yd; in particular, x < i and y < m. Thus,
observe that:

(σi)y = (σxd)y = σx(dy) = (σm)x = ex = e

⇒ |σi| ≤ y < m ⇒ σi cannot be an m−cycle (since in the previous exercise we showed that m−cycles have order
m).

(⇐) We want to show that if gcd(i,m) = 1, then σi is an m−cycle. Note, from the previous exercises, σi =
(1 + i, 2 + i, ...,m + i). Now, suppose for the sake of contradiction that gcd(i,m) = 1, but σi is not an m−cycle.
Then this implies that there exists distinct x, y ∈ {1, 2, ...,m} such that x+ i ≡ y+ i (mod m). Then m|(y−x)⇒⇐
since y − x < y ≤ m. Therefore, gcd(i,m) = 1 implies that σi is an m−cycle.

1.3.12

(a) Given that τ = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10), we want to determine whether or not there exists and n−cycle
(n ≥ 10) such that σk = τ for some k ∈ Z. Let σ̂ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Then observe that

σ̂2 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

= (1, 3, 5, 7, 9)(2, 4, 6, 8, 10)

⇒ σ̂3 = σ̂2(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

= (1, 4, 7, 10, 3, 6, 9, 2, 5, 8)

⇒ σ̂4 = σ̂3(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

= (1, 5, 9, 3, 7)(2, 6, 10, 4, 8)

⇒ σ̂5 = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)
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Therefore, let σ = (1, 3, 5, 7, 9, 2, 4, 6, 8, 10). Then σ5 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) = τ . Indeed,

σ2 = (1, 3, 5, 7, 9, 2, 4, 6, 8, 10)(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)

= (1, 5, 9, 4, 8)(2, 6, 10, 3, 7)

⇒ σ3 = σ2(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)

= (1, 7, 4, 10, 5, 2, 8, 3, 9, 6)

⇒ σ4 = σ3(1, 3, 5, 7, 9, 2, 4, 6, 8, 10)

= (1, 9, 8, 5, 4)(2, 10, 7, 6, 3)

⇒ σ5 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)

(b) Since this is similar to part (a) −which wasted way too much of my time− this part is ommitted.

1.3.13

Let e be the identity permutation. We want to prove that σ ∈ Sn has order 2 if and only if σ is the product of disjoint
2−cycles.

(⇐) First we prove the converse; that is, suppose that σ is the product of disjoint 2−cycles. Then since disjoint
cycles commute, we can write σ2 as the product of squared 2−cycles. Since the order of any 2−cycle is 2, this implies
that σ2 = e⇒ |σ| ≤ 2; since only the identity permutation has order < 2, this implies that |σ| = 2

(⇒) Now, proving the forward direction, suppose |σ| = 2. Assume for the sake of contradiction that the cycle
decomposition of σ contains a k−cycle, for some k ∈ {3, ..., n}. Then since disjoint cycles commute, σ2 may be
expressed as the product of the square of the disjoint cycles in the cycle decomposition of σ; i.e., if

σ = (a1, a2)(a3, a4) · ... · (am, am+1, ..., am+(k−1))

then
σ2 = (a1, a2)2(a3, a4)2 · ... · (am, am+1, ..., am+(k−1))

2

The squared 2−cycles will equal the identity permutation, but the squared k−cycle will equal some non-identity
permutation since k−cycles have order k. This, however, contradicts the fact that |σ| = 2. Therefore, the cycle
decompostion of σ must consist of only disjoint 2−cycles.

1.3.14

In this problem, we are asked to prove that for a prime number p, σ ∈ Sn has order p if and only if σ is the product
of disjoint p−cycles. Suppose σ has the cycle decomposition: σ = c1, c2, ..., cm, where ci are disjoint cycles for
i = 1, 2, ...,m.

(⇐) Suppose that each of the cycles in the cycle decomposition of σ are p−cycles. Then

σp = (c1, c2, ..., cm)p = cp1c
p
2 · ... · cpm = e

since disjoint cycles commute. Therefore, |σ| ≤ p; moreover, |σ| ≥ p, since for any positive integer a such that a < p,
cai 6= e for i = 1, 2, ...,m (since p−cycles have order p). Thus, |σ| = p.

(⇒) Now suppose |σ| = p. Assume for the sake of contradiction the cycle decomposition of σ contains a k−cycle,
where k 6= p; without loss of generality, suppose c1 is the k−cycle. Then, either

• |c1| = k > p, in which case cp1 6= e; or,

• |c1| = k < p, in which case p prime implies that k 6 | p ⇒ p = kq + r where q, r ∈ Z and 1 ≤ r < k ⇒ cp1 =

ckq+r1 = (ck1)qcr1 = cr1 6= e
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In either case, σp 6= e⇒ |σ| 6= p. Thus, |σ| = p implies that the cycle decomposition of σ consists only of the product
of disjoint p−cycles.

Note: If, however, p is not prime, then the forward direction of the above result does not necessarily hold. That is,
if m is a non-prime integer, then |σ| = m does not imply that the cycle decomposition of σ is the product of disjoint
m−cycles. For example, let σ = (1, 2)(3, 4, 5) ∈ S5. Then, |σ| = 6, but the cycle decomposition of σ is not a product
of disjoint 6−cycles (it is in fact as we expressed it above).

1.3.15

Suppose σ ∈ Sn has the cycle decomposition: σ = c1c2 · ... · cm, where ci are disjoint cycles for i = 1, 2, ...,m.
Suppose also that |c1| = n1, |c2| = n2,...,|cm| = nm. Let k := lcm(n1, n2, ...nm). Then,

σk = (c1c2 · ... · cm)k

= ck1c
k
2 · ... · ckm (since disjoint cycles commute)

= (cn1
1 )k1(cn2

2 )k2 · ... · (cnmm )km (where ki =
k

ni
for i = 1, 2, ...,m)

= ek1ek2 · ... · ekmm
= e

⇒ |σ| ≤ k.
Now, assume for the sake of contradiction that |σ| = k′ < k. Then, σk

′
= ck

′

1 c
k′

2 · ... · ck
′

m, and since k′ < k, k′ is
not a multiple of each of the ni (1 ≤ i ≤ m), which implies that there exists j ∈ {1, 2, ...,m} such that k′ = njq + r

where q, r ∈ Z and 1 ≤ r < nj ⇒ ck
′

j = (c
nj
j )qcrj = crj 6= e⇒⇐. Thus, |σ| ≥ k ⇒ |σ| = k.

1.3.16

Let σ ∈ Sn be an m−cycle, where m ≤ n. Then

σ(1) = k1, for k1 ∈ {1, 2, ..., n},
σ(2) = k2, for k2 ∈ {1, 2, ..., n} \ {k1},

...
σ(m) = k2, for k2 ∈ {1, 2, ..., n} \ {k1, k2, ..., km−1}

Therefore, there are n possible elements σ(1) may be, n − 1 possible elements σ(2) may be,..., and n − (m − 1) =
n−m+ 1 possible elements σ(m) may be. Note, however, that cycles cyclically permute their own elements, hence
there are m equivalent ways to represent the same m−cycle. Thus, the total number of distinct permutations σ may
be is:

n(n− 1) · ... · (n−m+ 1)

m
=
nm

m

1.3.17

Let σ ∈ Sn, where n ≥ 4, be a product of two disjoint 2−cycles.

σ(1) = k1, for k1 ∈ {1, 2, ..., n},
σ(2) = k2, for k2 ∈ {1, 2, ..., n} \ {k1},
σ(3) = k3, for k2 ∈ {1, 2, ..., n} \ {k1, k1},
σ(4) = k2, for k2 ∈ {1, 2, ..., n} \ {k1, k2, k3},

Therefore, there are n possible elements σ(1) may be, n− 1 possible elements σ(2) may be, n− 2 possible elements
σ(3) may be, and n − 3 possible elements σ(4) may be. Note, however, that cycles cyclically permute their own
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elements, hence there are 2 equivalent ways to represent the same first cycle and 2 equivalent ways to represent the
same second cycle; morover, disjoint cycles commute, which implies that there are 2 equivalent ways to write σ as the
product of the same disjoint 2−cycles. Thus, the total number of distinct permutations σ may be is:

n(n− 1)(n− 2)(n− 3)

2 · 2 · 2
=
n4

8

1.3.18

Non-identity permutations in S5, expressed as their cycle decomposition, may be 2, 3, 4, or 5−cycles, the product of
two 2−cycles, or the product of a 2 and 3−cycle. Therefore, elements in S5 may have orders: 1, 2, 3, 4, 5, or 6.

1.3.19

Non-identity permutations in S7, expressed as their cycle decomposition, may be 2, 3, 4, 5, 6, or 7−cycles, the product
of two or three 2−cycles, the product of two 3−cycles, the product of a 2−cycle and a 4−cycle, the product of
a 3−cycle and a 4−cycle, or the product of a 2−cycle and 5−cycle. Therefore, elements in S7 may have orders:
1, 2, 3, 4, 5, 6, 7, 10, or 12.

1.3.20

Omitted.

1.4
1.4.1

Recall that F2 = {0, 1}. Since |F2| = 2, this implies that |GL2(F2)| = (22 − 1)(22 − 2) = (3)(2) = 6.

1.4.2

Observe that the following set of 2 × 2 matrices with entries in F2 (where the overline has been ommitted for conve-
nience) have non-zero determinants:

S =

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
Therefore, S ⊆ GL2(F2); since |GL2(F2)| = 6 = |S| ⇒ GL2(F2) = S.(

1 0
0 1

)
is the identity element of GL2(F2), so it has order 1. As for the others, we have:

∣∣∣∣( 1 1
0 1

)∣∣∣∣ = 2∣∣∣∣( 1 0
1 1

)∣∣∣∣ = 2∣∣∣∣( 0 1
1 0

)∣∣∣∣ = 2∣∣∣∣( 1 1
1 0

)∣∣∣∣ = 3∣∣∣∣( 0 1
1 1

)∣∣∣∣ = 3
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1.4.3

Observe that for elements A =

(
0 1
1 1

)
and B =

(
1 1
0 1

)
in GL2(F2), we have

AB =

(
0 1
1 1

)(
1 0
1 1

)
=

(
0 1
1 1

)
but,

BA =

(
1 1
1 0

)(
1 1
0 1

)
=

(
1 1
1 0

)
Thus, AB 6= BA⇒ GL2(F2) is not an abelian group.

1.4.4

Let n ∈ N be composite, and assume for the sake of contradiction that Z/nZ is a field. Then since n is composite, this
implies that there exists integers a, b > 1 such that n = ab. Necessarily, a, b < n, and

ab ≡ 0 (mod n)

⇒ a−1ab ≡ a−10 (mod n)
⇐⇒ b ≡ 0 (mod n)

⇒⇐ since 1 < b < n.

1.4.5

We want to show that GLn(F ) is a finite group if and only if F is a finite field.
(⇐) Suppose F is finite. Then there exists m ∈ N such that |F | = m. Thus, there are mn2

many n× n matrices
whose entries are in F ⇒ |GLn(F )| ≤ mn2

<∞; i.e., GLn(F ) is a finite group.
(⇒) We prove the contrapositive. That is, suppose F is an infinite field; then we want to show that GLn(F )

is an infinite group. Let In be the n × n identity matrix and let a ∈ F \ {0}. Then aIn is a diagonal matrix
⇒ det(aIn) = an 6= 0, since a 6= 0 and fields do not have zero divisors. Thus, aIn is invertible⇒ aIn ∈ GLn(F ).
Since there are infinitely many such a to choose from, it follows that GLn(F ) is an infinite group.

1.4.6

If |F | = q <∞, and if Mn(F ) denotes the set of all n×n matrices whose entries are elements of F , then I claim that
|Mn(F )| = qn

2

. To see this, note that ifA is a matrix inMn(F ), then each of the n2 many elements inAmay be any of
the q elements in F . Thus, there are qn

2−many of such matrices A ∈Mn(F ). Hence, |GLn(F )| < |Mn(F )| = qn
2

.

Note: The inequality in the last sentence is strict since
(

0 0
0 0

)
∈Mn(F ) is not invertible.

1.4.7

Let M2(Fp) denote the set of all 2 × 2 matrices whose entries are elements of Fp. We recall two facts from matrix
theory:

1. A ∈M2(Fp) is not invertible ⇐⇒ a row in A is a multiple of the other row in A, and

2. A ∈M2(Fp) is not invertible ⇐⇒ A contains a column whose entries are both 0.
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Since |Fp| = p and each of the four entries of a matrix inM2(Fp) may be any element of Fp, it follows that |M2(Fp)| =
p4. Now, we want to subtract from M2(Fp) all non-invertible matrices. There are p2 possibly many rows a matrix
in M2(Fp) may have. Given a row A1 in a matrix A ∈ M2(Fp), there are p many multiples of A1 ⇒ there are
atleast p2 · p = p3 many non-invertible matrices in M2(Fp). Now, if A ∈ M2(Fp) is a matrix with a column whose
entries are both 0, then A is not invertible; since the other 2 entries in A may be any element in Fp, there are p2 many
such matrices. However, if a matrix A ∈ M2(Fp) contains a column whose entries are both 0, and (atleast) one of
the other elements in its other column are 0, then its rows are scalar multiples and were already counted in the first
p2 subtracted matrices; in this case, since there are p possible many entries for the other element, we must add back
p many matrices to avoid double counting. Thus, there are p4 − p3 − p2 + p invertible matrices in M2(Fp); i.e.,
|GLn(Fp)| = p4 − p3 − p2 + p.

1.4.8

As before in exercise 1.4.3., letA =

(
0 1
1 1

)
andB =

(
1 1
0 1

)
. ThenAB =

(
0 1
1 1

)
andBA =

(
1 1
1 0

)
,

hence, AB 6= BA.

Now, letX,Y ∈ GLn(F ), where we defineX :=

(
A 0n−2×n−2

0n−2×n−2 I2

)
and Y :=

(
B 0n−2×n−2

0n−2×n−2 I2

)
.

Then

XY =

(
AB 0n−2×n−2

0n−2×n−2 I2

)
6=
(

BA 0n−2×n−2

0n−2×n−2 I2

)
= Y X

Hence, for any integer n ≥ 2, GLn(F ) is non-abelian.

1.4.9

This problem is ommitted because it only requires a straightforward (but tedious) computation; nonetheless, we will
accept and use the result in future problems.

1.4.10

We are told that G =

{(
a b
0 c

)
: a, b, c ∈ R, a 6= 0, c 6= 0

}
.

(a) Observe that (
a1 b1
0 c1

)(
a2 b2
0 c2

)
=

(
a1a2 a1b2 + b1c2

0 c1c2

)
Since a1, c1, a2, c2 6= 0, this implies that a1a2 and c1c2 are nonzero, hence

(
a1a2 a1b2 + b1c2

0 c1c2

)
∈ G. That

is, G is closed under matrix multiplication.

(b) Recall from linear algebra, that given a 2× 2 matrix of the form

A =

(
a b
c d

)
A is invertible if and only if det(A) = ad− bc 6= 0, and if A is invertible, then

A−1 =
1

ad− bc

(
d −b
−c a

)
If a matrix B ∈ G, then B is of the form

B =

(
a b
0 c

)
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for some real numbers a, b, c with a, c 6= 0. Therefore, det(B) = ac− b · 0 = ac 6= 0⇒ B is invertible, and

B−1 =
1

ac

(
c −b
0 a

)
=

(
1
a

−b
ac

0 1
c

)
Since a, c 6= 0, this implies that 1

a and 1
c are nonzero, hence B−1 ∈ G. That is, G is closed under inverses.

(c) From the previous sub-problem, we have shown that every element in G is invertible, hence, G ⊂ GL2(R).
Moreover, we have shown that G is closed under matrix multiplication and closed under inverses. Therefore, G
is a subgroup of GL2(R).

(d) It suffices to show that the set S =

{(
a b
0 a

)
: a, b ∈ R and a 6= 0

}
is closed under matrix multiplication

and closed under inverses. Observe that for real numbers a1, a2, b, with a1, a2 6= 0, we have:(
a1 b
0 a1

)(
a2 b
0 a2

)
=

(
a1a2 a1b+ ba2

0 a1a2

)

Thus, S is closed under matrix multiplication. Also, if A =

(
a b
0 a

)
is a matrix in S, then det(A) = a2 6=

0⇒ A is invertible; moreover,

A−1 =
1

a2

(
a −b
0 a

)
=

(
1
a −b
0 1

a

)
a 6= 0⇒ 1

a 6= 0⇒ S is closed under invereses. Thus, S is also a subgroup of GL2(R).

1.4.11

The Heisenburg group over the field F is defined as

H(F ) =


 1 a b

0 1 c
0 0 1

 : a, b, c ∈ F


(a)

XY =

 1 a b
0 1 c
0 0 1

 1 d e
0 1 f
0 0 1

 =

 1 d+ a e+ af + b
0 1 f + c
0 0 1

 ∈ H(F )

and

Y X =

 1 d e
0 1 f
0 0 1

 1 a b
0 1 c
0 0 1

 =

 1 a+ d b+ dc+ e
0 1 c+ f
0 0 1

 ∈ H(F )

Hence, H(F ) is closed under matrix multiplication. Letting a = f = 1 and b = c = d = e = 0, we have:

X =

 1 1 1
0 1 1
0 0 1


and

Y =

 1 1 0
0 1 1
0 0 1


Therefore, in general, XY 6= Y X , hence H(F ) is not commutative.
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(b) Let A ∈ H(F ). Note that since A is a triangular matrix with nonzero entries in its diagonal, its determinant is
nonzero and is thus invertible. Now, consider the augmented matrix

[A|I3] =

 1 a b 1 0 0
0 1 c 0 1 0
0 0 1 0 0 1


Using elementary row operations, we reduce the left-side of the augmented matrix to the identity matrix I3, and
obtain the inverse of A:

[I3|A−1] =

 1 0 0 1 −a −b+ ac
0 1 0 0 1 −c
0 0 1 0 0 1


Therefore, A−1 ∈ H(F ).

(c) It requires only a straightforward (but tedious) computation to verify the associative law for H(F ), so I will not
bother.

Now, given that H(F ) is closed under multiplication, closed under inverses, contains an identity element (the
matrix I3), and satisfies associativity, we conclude H(F ) is a group. Moreover, it follows from the product rule
that the order of H(F ) is |F |3 since each matrix in H(F ) is uniquely determined by its three entries above the
diagonal, each of which may be any element in F .

(d) This is straightforward but tedious, so for the sake of time is ommitted.

(e) IfA =

 1 a b
0 1 c
0 0 1

 ∈ H(R), then it is easily shown by induction that for any n ∈ N,An =

 1 na ?
0 1 nc
0 0 1

,

where ? ∈ R. Therefore, if a or c is nonzero, then An 6= 03×3. If, on the other hand, a = c = 0, then

An =

 1 0 nb
0 1 0
0 0 1

 6= 03×3. Hence, every non-identity matrix in H(R) has infinite order.

1.5
1.5.1

The order of the elements in Q8 are:

|1| = 1 |k| = 4

| − 1| = 2 | − i| = 4

|i| = 4 | − j| = 4

|j| = 4 | − k| = 4

1.5.2

Below are the Cayley tables for S3, D8, and Q8:
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S3 e (12) (13) (23) (123) (132)
e e (12) (13) (23) (123) (132)

(12) (12) e (132) (123) (23) (13)
(13) (13) (123) e (132) (12) (23)
(23) (23) (132) (123) e (13) (12)
(123) (123) (13) (23) (12) (132) e
(132) (132) (23) (12) (13) e (123)

D8 1 r r2 r3 s sr sr2 sr3

1 1 r r2 r3 s sr sr2 sr3

r r r2 r3 a sr3 s sr sr2

r2 r2 r3 1 r sr2 sr3 s sr
r3 r3 1 r r2 sr sr2 sr3 s
s s sr sr2 sr3 1 r r2 r3

sr sr sr2 sr3 s r3 1 r r2

sr2 sr2 sr3 s sr r2 r3 1 r
sr3 sr3 s sr sr2 r r2 r3 1

Q8 1 −1 i −i j −j k −k
1 1 −1 i j k −i −j −k
−1 −1 1 −i i −j j −k k
i i −i −1 1 k −k −j j
−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i
−j −j j k −k 1 −1 −i i
k k −k j −j −i i 1 −1
−k −k k −j j i −i −1 1

1.5.3

Note that i2 = j2 = k2 = −1 ⇒ i(−i) = j(−j) = k(−k) = 1 ⇒ i−1 = −i, j−1 = −j, and k−1 = −k Therefore,
all equations satisfied by elements of Q8 follow from the relations below:

(−1)2 = 1, i2 = j2 = k2 = −1, and ijk = −1 (?)

Now, since i2 = −1 and ij = k, it follows that i and j generate Q8. So, to find a presentation of Q8 with generators i
and j, we need to find the relations that i and j satisfy so that the equations in (?) follow. We do this by starting with
the equations in (?), and reformulating them so that they involve only i, j, and their inverses.

Observe that multiplying both sides of the third equation by k yields ijk2 = −k ⇒ ij = k. Therefore, the second
relation is equivalent to i2 = j2 = (ij)2 = −1. Thus we have:

(−1)2 = 1, i2 = j2 = (ij)2 = −1, and ij(ij) = −1

The third equation is reduntant, so we thus have:

(−1)2 = 1 and i2 = j2 = (ij)2 = −1

Now, to get rid of −1 in the above equations, we define i2 := −1. Thus, the above relations reduce to:

i4 = 1 and i2 = j2 = (ij)2
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Lastly, we can rewrite j2 = (ij)2 as ij = ji−1, which let’s us know how we can commute elements in a product of
elements in Q8. Therefore, we have the following presentation:

Q8 = 〈i, j|i4 = 1, i2 = j2, ij = ji−1〉

1.6
1.6.1

Let (G, ?) and (H, �) be groups, φ : G→ H be a homomorphism, and x ∈ G.

(a) We use induction to prove that given any x ∈ G, φ(xn) = [φ(x)]n ∀n ∈ N.
Base Case: Trivially φ(x1) = φ(x) = [φ(x)]1 ⇒ φ(x1) = [φ(x)]1.
Induction Hypothesis: Suppose that for any k ∈ N that φ(xk) = [φ(x)]k.
Induction Step: Observe that φ(xk+1) = φ(x ? xk) = φ(x) � φ(xk) = φ(x) � [φ(x)]k = [φ(x)]k+1. Therefore,
for any x ∈ G, φ(xn) = [φ(x)]n ∀n ∈ N.

(b) Note that if 1 is the identity element in G and if x is any element in G, then φ(x) = φ(1 ? x) = φ(1) � φ(x)⇒
φ(1) is the identity element of H . Now we want to show that for any x ∈ G, φ(xn) = [φ(x)]n ∀n ∈ Z; we
proceed by using induction.
Base Cases: Trivially φ(x0) = φ(1) = [φ(x)]0 ⇒ φ(x0) = [φ(x)]0. Also, observe that φ(1) = φ(x ? x−1) =
φ(x) � φ(x−1)⇒ φ(x−1) = [φ(x)]−1.
Induction Step: Suppose that for any k ∈ N, that φ(x−k) = [φ(x)]−k.
Induction Step: Observe that φ(x−k−1) = φ(x−k ? x−1) = φ(x−k) � φ(x−1) = [φ(x)]−k � [φ(x)]−1 =

[φ(x)]k−1. Therefore, we conclude that for any x ∈ G, φ(xn) = [φ(x)]n ∀n ∈ Z.

1.6.2

We are told that φ : G → H is a homomorphism and we want to show that |x| = |φ(x)| for all x ∈ G. Before we
prove this, recall that from the previous exercises we showed that φ(1) is the identity element of H .

Suppose that |x| = n. Then xn = 1⇒ φ(1) = φ(xn) = [φ(x)]n ⇒ |φ(x)| ≤ n.

Alternatively, suppose |φ(x)| = m. Then [φ(x)]m = φ(1) ⇒ φ(1) = [φ(x)]m =
m∏
i=1

φ(x) = φ(xm) ⇒ xm =

1⇒ |x| ≤ |φ(x)|.
Therefore, |x| = |φ(x)|.

1.6.3

Let φ : G → H be an isomorphism. Then for any element h ∈ H , there exists x ∈ G such that φ(x) = h; therefore,
we can express elements in H in terms images, under φ, of elements in G.

Now, G is abelian ⇐⇒ xy = yx for all x, y ∈ G. Hence,

φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x)

⇒ H is abelian.
Similarly, H abelian ⇐⇒ φ(x)φ(y) = φ(y)φ(x) for all φ(x), φ(y) ∈ H . Hence,

φ(xy) = φ(x)φ(y) = φ(y)φ(x) = φ(yx)

⇒ G is abelian.
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1.6.4

Assume for the sake of contradiction that (R \ {0},×) is isomorphic to (C \ {0},×). Then since i ∈ C \ {0}
has order 4, there must exist some number x ∈ R \ {0} of order 4. Assuming such an x ∈ R \ {0} exists, then
x4 = 1 ⇐⇒ x4 − 1 = 0. Observe that

x4 − 1 = (x2 + 1)(x2 − 1) = (x− i)(x+ i)(x− 1)(x+ 1)

⇒ x = i,−i, 1, or −1. Now, i and −i are not in R \ {0}, which implies x = 1 or x = −1. However, 1 and −1
both have order less than 4, which implies that x 6= 1 and x 6= −1. Consequently, there is no element of order 4 in
(R \ {0},×), so we conclude that (R \ {0},×) is not isomorphic to (C \ {0},×).

1.6.5

Recall that Q is countably infinite, whereas R is uncountably infinite. Therefore, there does not exists a bijection
between Q and R, which implies that (Q,+) is not isomorphic to (R,+).

1.6.6

Assume for the sake of contradiction that there exists an isomorphism φ : (Z,+)→ (Q,+). Then note that 1 generates

Z; that is, ∀n ∈ Z, n = ±
n∑
i=1

1. Therefore, for every a ∈ Q, there exists m ∈ Z such that a = φ

(
±

m∑
i=1

1

)
=

±
m∑
i=1

φ(1) ⇒ Q is generated by φ(1). Hence, Q = 〈φ(1)〉 = {nφ(1) : n ∈ Z}. This implies that 1
2 · φ(1) = φ(1)

2 /∈

Q⇒⇐ since non-zero rational numbers are closed under multiplication.

1.6.7

In Q8 there is only one element that has order 2; namely, −1. However, in D8, there are four elements which have
order 2; namely, s, sr, sr2, and sr3. Therefore, there cannot be an isomorphism between Q8 and D8.

1.6.8

If n,m ∈ N such that n 6= m, then n! 6= m!⇒ |Sn| = n! 6= m! = |Sm| ⇒ Sn and Sm are not isomorphic.

1.6.9

r ∈ D24 has order 12, but every non-dentity element in S4 is of the form (ab), (abc), (abcd), or (ab)(cd), for some
distinct integers a, b, c, d ∈ {1, 2, 3, 4}; these elements in S4 have orders 2, 3, 4, and 2, respectively. Therefore, no
element in S4 has order 12, which implies that D24 and S4 are not isomorphic.

1.6.10

(a) Given that σ is a permutation on ∆, we want to show that φ(σ) = θ ◦ σ ◦ θ−1 is a permuation in on Ω. Since
θ : ∆ → Ω is a bijection, there is an inverse θ−1 : Ω → ∆, which is also a bijection; moreover, σ is a
permutation on ∆ means that σ : ∆ → ∆ is a bijection. Therefore, θ ◦ σ ◦ θ−1 is a composition of bijective
functions, and thus a bijection; moreover, maps elements from Ω to Ω since:

Ω
θ−1

−−→ ∆
σ−→ ∆

θ−→ Ω

Thus, φ(σ) = θ ◦ σ ◦ θ−1 is a permutation on Ω.

25



(b) Define the function χ : SΩ → S∆ as χ(τ) = θ−1 ◦τ ◦θ, where θ is the bijection given in part (a). Then χ is well
defined because if τ is a permutation on Ω, then χ(τ) is a composition of bijections− and thus a bijection− and

∆
θ−→ Ω

τ−→ Ω
θ−1

−−→ ∆

⇒ χ(τ) is a permuation on ∆.

Now, if σ ∈ S∆, observe that

χ(φ(σ)) = χ(θ ◦ σθ−1) = θ−1(θ ◦ σ ◦ θ−1) ◦ θ = θ−1 ◦ θ ◦ σ ◦ θ−1 ◦ θ = σ

⇒ χ ◦ φ = idS∆
, hence χ is a left inverse for φ. Moreover, if τ ∈ SΩ, observe that

φ(χ(τ)) = φ(θ−1 ◦ τ ◦ θ) = θ(θ−1 ◦ τ ◦ θ) ◦ θ−1 = τ

⇒ φ ◦ χ = idSΩ
, hence χ is a right inverse for φ. Therefore, χ is the inverse for φ, which implies that φ is a

biejction from S∆ to SΩ.

(c) Let e be the identity element of S∆, and let σ, τ ∈ S∆. Then, observe that

φ(σ ◦ τ) = θ ◦ (σ ◦ τ) ◦ θ−1

= θ ◦ σ ◦ e ◦ τ ◦ θ−1

= θ ◦ σ ◦ (θ−1 ◦ θ) ◦ τ ◦ θ−1

= (θ ◦ σ ◦ θ−1) ◦ (θ ◦ τ ◦ θ−1)

= φ(σ) ◦ φ(τ)

⇒ φ is a homomorphism.

Therefore, we conclude that if |∆| = |Ω|, then S∆
∼= SΩ.

1.6.11

Let (A, ?) and (B, �) be groups. Then recall that A × B = {(a, b) : a ∈ A, b ∈ B forms a group with the binary
operation · : (A × B) × (A × B) → A × B defined as (a1, b1) · (a2, b2) = (a1 ? a2, b1 � b2), and similarly
B × A{(b, a) : b ∈ B, a ∈ A forms a group with the binary operation · : (B × A)× (B × A) → B × A defined as
(b1, a1) · (b2, a2) = (b1 � b2, a1 ? a2). We want to show that A×B ∼= B ×A.

Define φ : (A × B) → (B × A) as φ(a, b) = (b, a). Then φ is bijection: note that φ(a1, b1) = φ(a2, b2) ⇒
(b1, a1) = (b2, a2), hence φ is one-to-one; moreover, if (b, a) ∈ B×A, then (a, b) ∈ A×B and φ(a, b) = (b, a)⇒ φ
is onto. Lastly, observe that

φ[(a1, b1) · (a2, b2) = φ[(a1 ? a2, b1 � b2)] = (b1 � b2, a1 ? a2)

and
φ(a1, b1) · φ(a2, b2) = (b1, aa) · (b2, a2) = (b1 � b2, a1 ? a2)

∴ φ[(a1, b1) · (a2, b2)] = φ(a1, b1) · φ(a2, b2)⇒ A×B ∼= B ×A.

1.6.12

We are told that A,B, and C are groups, G := A × B, and H := B × A; we want to show that G ∼= H . First, we
need the following lemma:

Lemma 2. The finite direct product of groups is a group.
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Proof. We use induction.
Base Case: Earlier in exercise 1.1.28, we showed that if A1 and A2 are groups, then A1 ×A2 is a group.

Induction Step: Suppose that for any positive integer n ≥ 2,
n∏
i=1

Ai is a group.

Inudction Step: Observe that
n+1∏
i=1

=

(
n∏
i=1

Ai

)
×An+1, which by the induction hypothesis is a product to two groups,

hence by the base case is a group.

Since the finite direct product of groups is a group, associativity holds for any finite direct product of groups.
Therefore, we have:

G× C = (A×B)× C = A× (B × C) = A×H

⇒ G × C = A × H; every group is isomorphic to itself (such an isomorphism is called and automorphism), hence
G× C ∼= A×H .

1.6.13

We are told that (G, ?) and (H, �) are groups and that φ : G → H is a homomorphism. We want to show that
φ(G) = {h ∈ H : h = φ(g) for some g ∈ G} is also a group under �. Since φ(G) ⊆ H , φ(G) inherits associativity
under �. Also, since φ is a homomorphism, it maps the identity in G, eG, to the identity in H , eH ; that is, φ(eG) =
eH ⇒ eH ∈ H . Thus, it suffices to show that φ(G) is closed under � and under inverses.

Let h1, h2 ∈ φ(G). Then there exists g1, g2 ∈ G such that h1 = φ(g1), h2 = φ(g2). Therefore, h1 � h2 =
φ(g1) �φ(g2) = φ(g1 ? g2) ∈ φ(G), hence φ(G) is closed under �. Furthermore, if h ∈ φ(G), then there exists g ∈ G
such that h = φ(G), which implies that h−1 = [φ(g)]−1 1.6.1

= φ(g−1) ∈ φ(G); consequently, φ(G) is closed under
inverses. We thus conclude that φ(G) is a group.

Now, suppose φ is injective, or one-to-one. Then, φ|G is a bijection between the two groups G and φ(G). More-
over, φ|G is a homomorphism (since φ is a homomorphism), hence G ∼= φ(G).

1.6.14

Let (G, ?) and (H, �) be groups with identities eG and eH respectively. We first want to show that if φ : G → H is
a homomorphism, then ker(φ) := {g ∈ G : φ(g) = eH} is a subgroup of H . Since ker(φ) ⊆ G, ker(φ) inherits
associativity. Also, since φ is a homomorphism, φ(eG) = eH ⇒ eG ∈ ker(φ). Therefore, it suffices to show that
ker(φ) is clused under � and under inverses.

Let g1, g2 ∈ ker(φ). Then
φ(g1 ? g2) = φ(g1) � φ(g2) = eH � eH = eH

⇒ g1 ? g2 ∈ ker(φ). Now, if g ∈ ker(φ), then

φ(g−1) = [φ(g)]−1 = e−1
H = eH

⇒ g−1 ∈ ker(φ). Hence, ker(φ) is a subgroup of G.
Next we want to show that φ injective ⇐⇒ ker(φ) = {eG}.

(⇒) Suppose φ is injective. Then for any g1, g2 ∈ G, φ(g1) = φ(g2) ⇒ g1 = g2; since φ is a homomorphism, this
implies that φ(eG) = eH . Therefore, ker(φ) = {eG}.
(⇐) Suppose that ker(φ) = {eG}. If g1, g2 ∈ G and φ(g1) = φ(g2), then this implies that

φ(g1) � [φ(g2)]−1 = eH ⇐⇒ φ(g1) � φ(g−1
2 ) = eH ⇐⇒ φ(g1 ? g

−1
2 ) = eH

⇒ g1 ? g
−1
2 = eG ⇒ g1 = g2, hence φ is injective.
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1.6.15

Assuming R2 and R are additive groups we want to show that the function π : R2 → R defined as π(x, y) = x is a
homomorphism. Observe that

π
(
x1, y2) + (x2, y2)

)
= π

(
(x1 + x2, y1 + y2)

)
= x1 + x2 = φ

(
(x1, y2)

)
+ π

(
(x2, y2)

)
⇒ π is a homomorphism.

Now, we want to describe ker(π). Observe that

ker(π) = {(x, y) ∈ R2 : π(x, y) = 0}
= {(x, y) ∈ R2 : x = 0}
= {(0, y) : y ∈ R} ∼= R

1.6.16

Given groups (A, ?) and (B, �), we want to show that the functions π1 : A × B → A and π2 : A × B → B defined
as π1

(
(a, b)

)
= a and π2

(
(a, b)

)
= b are homomorphisms. Observe that

π1

(
(a1, b1) ? (a2, b2)

)
= π1

(
(a1 ? a2, b1 � b2)

)
= a1 ? a2 = π1

(
a1, b2)

)
? π1

(
(a2, b2)

)
and similarly,

π2

(
(a1, b1) ? (a2, b2)

)
= π2

(
(a1 ? a2, b1 � b2)

)
= b1 � b2 = π2

(
(a1, b2)

)
� π2

(
(a2, b2)

)
Hence, π1 and π2 are homomorphisms. Furthermore,

ker(π1) = {(a, b) ∈ A×B : π1

(
(a, b)

)
= eA} = {(eA, b) : b ∈ B} ∼= B

and similarly
ker(π2) = {(a, b) ∈ A×B : π2

(
(a, b)

)
= eB} = {(a, eB) : a ∈ A} ∼= A

1.6.17

We want to show that the function φ : G→ G defined as φ(g) = g−1 is a homomorphism if and only if G is abelian.
(⇒) Suppose φ is a homomorphism Then for any g1, g2 ∈ G, we have:

g−1
2 g−1

1 = (g1g2)−1 = φ(g1g2) = φ(g1)φ(g2) = g−1
1 g−1

2

⇒ g−1
2 g−1

1 = g−1
1 g−1

2 ⇐⇒ eG = g1g2g
−1
1 g−1

2 ⇐⇒ g2g1 = g1g2 ⇒ G is abelian.
(⇐) Suppose G is abelian. Then for every g1, g2 ∈ G, g1g2 = g2g1. Therefore,

φ(g1g2) = (g1g2)−1 = g−1
2 g−1

1 = g−1
1 g−1

2 = φ(g1)φ(g2)

⇒ φ is a homomorphism.

1.6.18

φ : G→ G defined by φ(g) = g2 is a homomorphism ⇐⇒ ∀ g, h ∈ G,φ(gh) = φ(g)φ(h)

⇐⇒ (gh)2 = g2h2

⇐⇒ ghgh = gghh

⇐⇒ hg = gh

⇐⇒ G is abelian.
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1.6.19

We want to show that given the group G = {z ∈ C : zn = 1 for some n ∈ N}, the function φ : G → G defined as
φ(z) = zk is a surjective homomorphism, but not isomorphism, for any integer k > 1.

Let w, z ∈ G. Then observe that φ(wz) = (wz)k = wkzk = φ(w)φ(z) ⇒ φ is a homomorphism. Moreover,
if z ∈ G, then there exists m ∈ N such that zm = 1. Therefore, (z

1
k )km = z

km
k = zm = 1 ⇒ z

1
k ∈ G, and

φ(z
1
k ) = (z

1
k )k = z

k
k = z; hence, φ is surjective. Note, however, φ is not an isomorphism because

ker(φ) = {z ∈ G : φ(z) = 1}
= {z ∈ G : zk = 1}

= {ei 2mπ
k : m = 0, 1, ..., k − 1}

=

{
cos

(
2mπ

k

)
+ i sin

(
2mπ

k

)
: m = 0, 1, ..., k − 1

}
6= {1}

⇒ φ is not injective.

1.6.20

Let Aut(G) := {φ : G→ G|φ is an isomorphism}; we want to show that Aut(G) is a group under function composi-
tion.

If f, g, h ∈ Aut(G), then observe that(
f ◦ (g ◦ h)

)
(x) = f

(
(g ◦ h)(x)

)
= f

(
g(h(x)

)
=
(
f ◦ g

)(
h(x)

)
=
(
(f ◦ g) ◦ h

)
(x)

⇒ Aut(G) is associative under ◦. Now, if f, g ∈ Aut(G), then f ◦ g is a bijection and ∀ x, y ∈ G,

(f ◦ g)(xy) = f(g(xy)) = f
(
g(x)g(y)

)
= f

(
g(x)

)
f
(
g(y)

)
= (f ◦ g)(x)(f ◦ g)(y)

⇒ (f ◦ g) ∈ Aut(G); i.e., Aut(G) is closed under ◦. Lastly, if f ∈ Aut(G), since f is a bijection, there exists a unique
inverse functions f−1 : G→ G; moreover, x′, y′ ∈ G⇒ there exists unique x, y ∈ G such that x′ = f(x), y′ = f(y).
Therefore,

f−1(x′y′) = f−1
(
f(x)f(y)

)
= f−1

(
f(xy)

)
= xy = f−1(x′)f−1(y′)

⇒ f−1 ∈ Aut(G); i.e., Aut(G) is closed under inverses. Hence, (Aut(G), ◦) is a group.

1.6.21

We want to show that for each fixed integer k 6= 0 that the function φ : Q → Q is an automorphism, where Q is
understood to be an additive group.

Let k 6= 0. Then observe that if p, q ∈ Q, then

φ(p) = φ(q)

⇐⇒ kp = kq

⇐⇒ p = q

⇒ φ is injective. Now, if q ∈ Q, then since k 6= 0, qk ∈ Q; moreover, φ
(
q
k

)
= k · qk = q ⇒ φ is surjective. Lastly, if

p, q ∈ Q, then φ(p+ q) = k(p+ q) = kp+ kq = φ(p) + φ(q)⇒ φ is an isomorphism. Therefore, we conclude that
φ is an automorphism on Q.
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1.6.22

Let e be the identity of the abelian group A. Then given a fixed integer k, we first want to show that the function
φ : A→ A defined as φ(a) = ak is a homomorphism. Let a, b ∈ A. Then observe that

φ(ab) = (ab)k
A abelian

======= akbk = φ(a)φ(b)

⇒ φ is a homomorphism.
Now, we want to show that when k = −1, φ is an automorphism. It suffices to prove that when k = −1, φ is a

bijection. Observe that

ker(φ) = {a ∈ A : φ(a) = e}
= {a ∈ A : a−1 = e}
= {e}

⇒ φ is injective. Now, if a ∈ A, then a−1 ∈ A (since A is a group), and φ(a−1) = (a−1)−1 = a ⇒ φ is surjective.
Therefore, when k = −1, φ is an automorphism.

1.6.23

We are told that σ : G→ G is an automorphism such that σ(g) = g if and only if g = 1, where 1 is the identity of G.
We want to show that if σ2 : G→ G is the identity map, then G is abelian.

Set H := {x−1σ(x) : x ∈ G} ⊆ G, and define the function φ : G → H as φ(x) = x−1σ(x). First note that
φ(1) = 1−1σ(1) = 1 · 1 = 1. Now, let x ∈ G \ {1}. Then since x 6= 1⇒ σ(x) 6= x⇒ x−1σ(x) 6= 1; furthermore, if
x, y ∈ G \ {1} and φ(x) = φ(y), then we have:

x−1σ(x) = y−1σ(y) ⇐⇒ yx−1 = σ(y)[σ(x)]−1 ⇐⇒ yx−1 = σ(y)σ(x−1) ⇐⇒ yx−1 = σ(yx−1)

⇒ yx−1 = 1 ⇒ x = y; i.e., φ : G → H is one-to-one. Hence, |G| ≤ |H|. Since H ⊆ G, this implies that
|G| ≥ |H| ⇒ |G| = |H| ⇒ G = H . Therefore, we conclude that every element in G can be expressed as x−1σ(x),
where x is some other elment in G.

Thus, if g ∈ G, then there exists x ∈ G such that g = x−1σ(x). Therefore,

σ(g) = σ(x−1σ(x))

= σ(x−1)σ2(x)

= [σ(x)]−1x

= [x−1σ(x)]−1

= g−1

Hence, if g, h ∈ G, then σ(gh) = (gh)−1 = h−1g−1, yet on the other hand, σ(gh) = σ(g)σ(h) = g−1h−1; thus,
h−1g−1 = g−1h−1 ⇒ g−1h = hg−1 ⇒ hg = gh. That is, G is abelian.

1.6.24

We are told that the elements x and y, both of order 2, generate the finite group G; i.e., 〈x, y〉 = G. Let t := xy ∈ G;
note that we are told that |t| = |xy| = n. Then |x| = 2 implies that x = x−1; hence,

t = xy

⇐⇒ t = xy−1

⇒ tx = xy−1x−1

⇐⇒ tx = x(xy)−1

⇐⇒ tx = xt−1

30



Also, xt = x(xy) = x−1xy = y ⇒ t and x generate G. Therefore, we have the group presentation of G:

〈x, t|x2 = tn = 1, tx = xt−1〉

Which is the same, up to notation, presentation as D2n; thus, G ∼= D2n.

1.6.25

Do later....

1.6.26

We want to show that the function φ : Q8 → GL2(C) defined by φ(i) =

( √
−1 0
0 −

√
−1

)
and φ(j) =(

0 −1
1 0

)
extends to a homomorphism. Recall that the presentation of Q8 is:

〈i, j|i4 = 1, i2 = j2, ij = ji−1〉

Therefore, if φ(i) and φ(j) satisfy the same relations in the presentation above, then we conclude that φ is a homo-
morphism between Q8 to the group generated by φ(i) and φ(j), which we denote as H ⊂ GL2(C).

Observe that

[φ(i)]2 =

( √
−1 0
0 −

√
−1

)( √
−1 0
0 −

√
−1

)
=

(
−1 0
0 −1

)
= −I2×2

⇒ [φ(i)]4 = (−I2×2)2 = I2×2, and

[φ(j)]2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
= −I2×2

⇒ [φ(i)]2 = [φ(j)]2; also,

φ(i)φ(j) =

( √
−1 0
0 −

√
−1

)(
0 −1
1 0

)
=

(
−
√
−1 0

0 −
√
−1

)
and, on the other hand,

φ(j)[φ(i)]−1 =

(
0 −1
1 0

)(
−
√
−1 0

0
√
−1

)
=

(
0 −

√
−1

−
√
−1 0

)
⇒ φ(i)φ(j) = φ(j)[φ(i)]−1. Therefore, φ is a homomorphism between Q8 and H := 〈φ(i), φ(j)〉. Furthermore,

we have shown that i, j, i2 = j2 = −1, and ij = k are not in ker(φ) =

{
x ∈ Q8 : φ(x) =

(
1 0
0 1

)}
, hence

i−1 = −i, j−1 = −j, and k−1 = −k are not in ker(φ). Therefore, the only element of Q8 in ker(φ) is 1; thus, φ is
injective⇒ Q8

∼= H .

1.7
1.7.1

Let g1, g2 ∈ F× and a ∈ F . Then observe that

g1 · (g2 · a) = g1 · (g2a)

= g1(g2a)

= (g1g2)a, by associativity in F×

= (g1g2) · a

Moreover, if 1 is the multiplicative identity (or unit) in F , then 1 · a = 1a = a. Hence, F× acts on F .
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1.7.2

Let z1, z2, a ∈ Z. Then

z1 · (z2 · a) = z1 · (z2 + a)

= z1 + (z2 + a)

= (z1 + z2) + a, by associativity of (Z,+)

= (z1 + z2) · a

Also, 0 is the identity element in (Z,+), and 0 · a = 0 + a = a. Hence, Z acts on itself via left translation.

1.7.3

Let r, s ∈ R and (x, y) ∈ R× R. Then observe that:

r · (s · (x, y)) = r · ((x+ sy, y))

= ((x+ sy) + ry, y)

= (x+ (r + s)y, y)

= (r + s) · (x, y)

Also, 0 is the identity in (R,+), and 0 · (x, y) = (x+ 0y, y) = (x, y). Thus, R acts on R× R with the given map.

1.7.4

(a) Recall that the kernal of the action of G on A is the set {g ∈ G : g · a = a, ∀a ∈ A}, which I will denote as
ker. To show that ker is a subgroup of G, we need to show that ker is nonempty, and that h, k ∈ ker implies that
h−1 ∈ ker and hk ∈ ker. First note that if e is the identity element in G, then e ∈ ker since by the definition of
a group action e ·a = a ∀a ∈ A. Thus, ker is nonempty. Now, suppose h, k ∈ ker. Then, since by the definition
of group action, for any a ∈ A, we have:

h−1 · (h · a) = (hh−1) · a = e · a = a

Now, since h · a = a ∀a ∈ A, this implies that h−1 · a = a ∀a ∈ A; hence, h−1 ∈ ker. Furthermore, for all
a ∈ A, we have:

(hk) · a = h · (k · a) = h · a = a

⇒ hk ∈ ker. Hence, ker is a subgroup of G.

(b) For fixed a ∈ G, denote the stabilizer of G as Ga := {g ∈ G : ga = a}. Again, to show that Ga is a subgroup
of G, we need to show that it is nonempty and closed under both its group operations and inverses. First, note
that if e is the identity element of G, then ea = a ⇒ e ∈ Ga, hence Ga 6= ∅. Now, suppose h, k ∈ Ga. Then
observe that

h−1a = h−1(ha) = (h−1h)a = ea = a

⇒ h−1 ∈ Ga. Also, observe that
(hk)a = h(ka) = ha = a

⇒ hk ∈ Ga. Hence, Ga is a subgroup of G, for each a ∈ G.

1.7.5

We want to show that the kernal of an action of the group G on the set A is the same as the kernal of the corresponding
permutation representation G → SA defined as g 7→ σg . That is, we want to show that the set {g ∈ G : g · a =
a, ∀a ∈ A} is the same as the set {g ∈ G : σg = idA}. If g ∈ G is such that g · a = a ∀a ∈ A, then for every
a ∈ A, σg(a) = g · a = a ⇒ σg = idA. Hence, {g ∈ G : g · a = a, ∀a ∈ A} ⊆ {g ∈ G : σg = idA}.
Alternatively, if g ∈ G is such that σg = idA, then for every a ∈ A, g · a = σg(a) = a⇒ g · a = a ∀a ∈ A. Hence,
{g ∈ G : σg = idA} ⊆ {g ∈ G : g · a = g}. Therefore, the two sets are equal.
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1.7.6

By definition of a group action, the group identity element, e, satisfies the property e · a = a ∀a ∈ A, which is the
necessary condition for an element to be in the kernal of the group action.

Suppose G acts faithfully on A. This means that for every g1, g2 ∈ G such that g1 6= g2, we have

g1 · a 6= g2 · a

for some a ∈ A. Therefore, if g is in the kernal of the group action, then g · a = a ∀a ∈ A ⇒ g = e. That is, the
kernal only consists of e.

Conversely, suppose that the kernal consists only of e, and assume for the sake of contradiction that G does not act
faithfully on A. Then, there exists g1, g2 ∈ G such that g1 · a = g2 · a for every a ∈ A. Consequently, for each a ∈ A,
we have:

(g−1
1 g2) · a = g−1

1 · (g2 · a)

= g−1
1 · (g1 · a)

= (g−1
1 g1) · a

= e · a
= a

⇒ g−1
1 g2 is in the kernal of the group action⇒ g−1

1 g2 = e⇒ g2 = g1 ⇒⇐. Hence, when the kernal consists of only
the identity element, G acts faithfully on A.

1.7.7

The group action F× × V → V is defined as the normal (componentwise) scalar multiplication equipped to vector
spaces. That is, λ · v 7→ λ(v1, ..., vn) = (λv1, ..., λvn). We want to show that FX acts faithfully on V ; that is, we
want to show that for every λ1, λ2 ∈ F× such that λ1 6= λ2, there exists v ∈ V such that λ1 · v 6= λ2 · v.

Assume for the sake of contradiction that the F× does not act faithfully on V . Then, there exists λ1, λ2 ∈ F×
such that λ1 6= λ2 and for every v ∈ V ,

λ1 · v = λ2 · v
⇐⇒ λ1(v1, ..., vn) = λ2(v1, ..., vn)

⇐⇒ (λ1v1, ..., λ1vn) = (λ2v1, ..., λ2vn)

⇐⇒ λ1vi = λ2vi, for i = 1, ..., n

⇐⇒ (λ1 − λ2)vi = 0, for i = 1, ..., n (?)

Since (?) must hold for every v ∈ V , letting v := (1, 0, ..., 0 gives us a contradiction. Hence, F× acts faithfully on
V .

1.7.8

We are told that A is a nonempty set and that for fixed k ∈ N with k ≤ |A|, B is a collection of subsets of A with
cardinality k. We are also told that SA ×B → B is defined as σ · {a1, ..., ak} = {σ(a1), ..., σ(ak)}.

(a) First we want to show that SA × B → B as defined above is a group action. Observe that if σ1, σ2 ∈ SA and
{a1, ..., ak} ∈ B, then

σ1 · (σ2 · {a1, ..., ak}) = σ1 · {σ2(a1), ..., σ2(ak)}
= {σ1(σ2(a1)), ..., σ1(σ2(ak))}
= {(σ1 ◦ σ2)(a1), ..., (σ1 ◦ σ2)(ak)}
= (σ1 ◦ σ2) · {a1, ..., ak}
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Also, idA · {a1, ..., ak} = {idA(a1), ..., idA(ak)} = {a1, ..., ak}. Hence, SA × B → B as defined above is a
group action.

(b) The six 2−element subsets of {1, 2, 3, 4} are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. Observe that

(1, 2) · {1, 2} = {1, 2} (1, 2) · {2, 3} = {1, 3}
(1, 2) · {1, 3} = {2, 3} (1, 2) · {2, 4} = {1, 4}
(1, 2) · {1, 4} = {2, 4} (1, 2) · {3, 4} = {3, 4}

and

(1, 2, 3) · {1, 2} = {2, 3} (1, 2, 3) · {2, 3} = {1, 3}
(1, 2, 3) · {1, 3} = {1, 2} (1, 2, 3) · {2, 4} = {3, 4}
(1, 2, 3) · {1, 4} = {2, 4} (1, 2, 3) · {3, 4} = {1, 4}

1.7.9

Omitted.

1.7.10

Omitted.

1.7.11

Denote the set of vertices of the square on page 24 of D&F as V . We denote the permutation obtained by an element
x acting on the vertices as x · V . Then, we have:

1 · V = (1) s · V = (24)

r · V = (1234) sr · V = (14)(23)

r2 · V = (13)(24) sr2 · V = (13)

r3 · V = (1432) sr3 · V = (12)(34)

1.7.12

Omitted.

1.7.13

Let e be the identity element of G, and recall that the left regular action G×G→ G on G is given by g · a = ga; i.e.,
it is just left multiplication of elements in G.

Then ker = {g ∈ G : g · a = a ∀a ∈ G} = {g ∈ G : ga = a ∀a ∈ G}; in particular, g ∈ ker ⇒ g · g = g ⇐⇒
g2 = g ⇒ g = e. Hence, ker = {e}.

1.7.14

Since G is not abelian, there exists g1, g2 ∈ G such that g1g2 6= g2g1. Then observe that for any a ∈ A, we have:

g1 · (g2 · a) = g1 · (ag2) = ag2g1

but
(g1g2) · a = ag1g2

Since A = G, we may let a = e. Then since g1g2 6= g2g1, this implies that g1 · (g2 · a) 6= (g1g2) · a for atleast one
a ∈ G, hence the group action conditions are not satisfied.
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1.7.15

Let g1, g2 ∈ G and a ∈ A = G. Then observe that:

g1 · (g2 · a) = g1 · ag−1
2

= ag−1
2 g−1

1

= a(g1g2)−1

= (g1g2) · a

Moreover, if e denotes the identity element in G, then we have:

e · a = ae−1 = a

Therefore, g · a = ag−1 satisfies the group action axioms.

1.7.16

Let g1, g2 ∈ G and a ∈ A = G. Then observe that:

g1 · (g2 · a) = g1 · g2ag
−1
2

= g1(g2ag
−1
2 )g−1

1

= (g1g2)a(g1g2)−1

= (g1g2) · a

Moreover, if e denotes the identity element in G, then we have:

e · a = eae−1 = a

Therefore, conjugation is a group action.

1.7.17

For fixed g ∈ G, let χg : G→ G be given by χg(x) = gxg−1. Then observe that for any x, y ∈ G, we have:

χg(x)χg(y) = (gxg−1)(gyg−1)

= gx(g−1g)yg−1

= gxyg−1

= χg(xy)

⇒ χg is a homomorphism. Now, consider χg−1 . Observe that for any x ∈ G, we have:(
χg ◦ χg−1

)
(x) = χg

(
χg−1(x)

)
= χg

(
g−1x(g−1)−1

)
= χg(g

−1xg)

= g(g−1xg)g−1

= x

and similarly

(χg−1 ◦ χg)(x) = χg−1

(
χg(x)

)
= χg−1(gxg−1)

= g−1(gxg−1)(g−1)−1

= g−1(gxg−1)g

= x
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Hence, χg−1 is the inverse of χg , which shows that χg is a bijection; thus, χg is an isomorphism.

Now, suppose |x| = n. Then for any g ∈ G, it is easy to see that
n∏
i=1

gxg−1 = gxng−1; hence |x| = n implies that

|gxg−1| = n. Furthermore, since we showed above that χg : G → G is an isomorphism, if A ⊂ G, this implies that
|A| ∼= |χg(A)| = |gAg−1|.

1.7.18

Let a, b, c ∈ A. Then observe that:

• a ∼ a ⇐⇒ a = ha for some h ∈ H; let h := e, and reflexivity is satisfied.

• a ∼ b ⇐⇒ a = hb⇒ h−1a = h−1hb = b⇒ b ∼ a, thus symmetry is satisfied.

• a ∼ b, b ∼ c ⇐⇒ a = h1b, b = h2c⇒ a = h1(h2c) = (h1h2)c⇒ a ∼ c, thus transitivity is satisfied.

Therefore, ∼ is an equivalence relation.

1.7.19

Let θ : H → Ox be given by θ(h) = hx. If h1, h2 ∈ H , then observe that:

θ(h1) = θ(h2)

⇐⇒ h1x = h2x

⇐⇒ h1 = h2, since x ∈ G

⇒ θ is injective. Now, if y ∈ Ox, then y = hx for some h ∈ H , which implies that y = θ(h), showing that θ is
surjective. Therefore, θ is a bijection; since x ∈ G is arbitrary, we conclude that all orbits under the action of H have
the same cardinality as H .

Now, we are assuming G is a finite group, say of cardinality n; denote the elements of G as x1, x2, ..., xn. In the
previous exercise we showed that orbits under the action of H partition H , and in this exercise we have shown that the
orbits under the action of H each have the same cardinality; the same cardinality as H in particular. Therefore,

|G| =
n∑
i=1

|Ox| =
n∑
i=1

|H| = n|H|

⇒ |H| divides |G|.

1.7.20

Let S denote the group of symmetries of a tetrahedron, and let A denote the vertices of the tetrahedron; note that
|A| = 4. Then by definition of rigid motions, for each s ∈ S, s sends each vertex in A to a vertex in A, and it does so
bijectively; that is, s induces a permutation on A, which we denote σs. Therefore, S acts on A, and the action is given
by s · a = σs(a).

Now, consider the map ϕ : S → S4 given by ϕ(s) = σs. Let s, t ∈ S. Then observe that for each a ∈ A, we have:

ϕ(st)(a) = σst(a)

= (st) · a
= s · (t · a)

= s · σt(a)

= σs
(
σt(a)

)
= (σs ◦ σt)(a)

= ϕ(s)ϕ(t)(a)
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which shows that ϕ is a homomorphism. Note that it is also injective, since

ϕ(s) = ϕ(t)

⇐⇒ ϕ(s)(a) = ϕ(t)(a),∀a ∈ A
⇐⇒ σs(a) = σt(a),∀a ∈ A
⇐⇒ s · a = t · a,∀a ∈ A

⇒ s = t. Consequently, S ∼= ϕ(S) ≤ S4.

1.7.21

Omitted.

1.7.22

Omitted.

1.7.23

Omitted.
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