Solutions to Problems in Abstract Algebra by Dummit and Foote
(Chapter 0)

Isaac Dobes
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0.1
0.1.1

Using the result from exercise 0.1.4 below, we conclude that (
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0.1.2

Recall that matrix multiplication is distributive. Therefore, P,Q € B < MP = PM,MQ = QM = M(P +
Q) =MP+MQ=PM+QM=(P+Q)M = P+Q€B.

0.1.3

Recall that matrix multiplication is associative. Therefore, P,Q € B < MP = PM, MQ = QM = M(P-Q) =
(M-P)Q=(P-M)Q=PM-Q)=PQ-M)=(P-QM=P-QeB.
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0.1.5

(a) There is some ambiguity in this question. Some define Qas {% : a,b € Z,b # 0, and a and b have no common divisors};
in this case, £ € Q, whereas % ¢ Q. If we accept this definition, then f : Q — Z defined as f (%) = ¢ is in fact
well-defined since every rational number is uniquely determined by its numerator and denominator. If, however,
we define Q as {¢ : a,b € Z,b # 0}, then f : Q — Z defined as f() = a is undefined since % = %, but
1= f(3) # f(3) = 2. Note that the book defines Q in the second way, so this is the answer I believe they are
looking for; nonetheless, I think it is better to define QQ in the first way.

(b) f:Q — Qdefined as f($) = ‘g—z is well-defined because if ¢ = <, then f(%) = % = ($)* = (£)? = f(9).



0.1.6

The function f : RT — Z which maps a positive real number r to the first digit to the right of the decimal point in a
decimal expansion of r is not well-defined since 0.999.... = 1.000...., but 9 = £(0.999...) # f(1.000...) = 0.

0.1.7

Given a surjective function f : A — B, we want to prove that the relation ~ on A x A definedasa ~ b < f(a) =
f(b) is an equivalent relation. Observe that:

(@ a~a < f(a) = f(a), which indeed is always true (assuming f is a well-defined function); hence ~ is
reflexive

b) a~b < f(a)=f(b) < [f(b) = f(a) < b~ a;hence, ~ is symmetric
© ar~bb~ce = fla)=f0),f(b) =flc) < fla) = [f(b) = flc) = fla) = f(b) <= a~c

Therefore, ~ is an equivalence relation. Now, if [a] is an equivalence class of ~, then b € [a] <= b € A such that
f(a) = f(b) = [a] = f~1(a); hence, the equivalence classes of ~ are the fibers of f.

0.2
0.2.1
(a)
20 = 1(13) + 17
13 = 1(7) + 6
7=1(6)+1
6 =6(1)
= gcd(20,13) = 1. Since 20 and 13 are relatively prime, lem(20, 13) = 20(13) = 260. Working backwards,
we see that:
1=7-1(6)
=7-1[13 - 1(7)]
=2(7)—13
= 2[20—1(13)] — 13
= 2(20) — 3(13)
= ged(20,13) = 2(20) — 3(13).
(b)
372 = 5(69) + 27
69 = 2(27) + 15
27 = 1(15) + 12
15=1(12) + 3
12 = 4(3)



= gcd(372,69) = 3. lem(372,69) = ——r209) _ _ 25.668 _ g 556 Working backwards, we see that:

gcd(372,69) 3

3=15—1(12)
=15—1(27 - 15)

=2(15) — 27

=2[69 — 2(27)] — 27

= 2(69) — 5(27)

= 2(69) — 5[372 — 5(69)]
= 27(69) — 5(372)

= gcd(372,69) = (—5)372 + (27)69.
(©)

792 = 2(275) + 242

275 = 1(242) + 33

242 = 7(33) + 11
33 = 3(11)

= ged(792,275) = 11. Now, lem (792, 275) = 22300 — 215500 — 19, 800. Working backwards, we see
that:

11 = 242 — 7(33)
= 242 — 7[275 — 1(242)]
= 8(242) — 7(275)
= 8[792 — 2(275)] — 7(275)
— 8(792) — 23(275)

= gcd(792,275) = 8(792) — 23(275).
(d) Omitted.
(e) Omitted.

Parts (d) and (e) are omitted because they are analogous to (a), (b), and (c).

0.2.2

We are told that k|a and k|b, and we want to show that k|(as + bt). Since k
similarly, k|b implies that there exists d € Z such that b = kd. Therefore,

a, there exists ¢ € Z such that a = kc;

as + bt = kes + kdt = k(es + dt)

= kl|(as + bt).

0.2.3

We are told that n is composite and we want to show that there exists integers a and b such that n|ab but n / a and
n fb. Now, n = p{* - ... - p%=, where s > 1, a; > 1Vi € [s], and p1, ..., ps are prime. Let p be a prime number such
thatp ¢ {p1,...,ps}. Then pn = p(py* - ... - p%=). Since n is composite, p{* - ... - p¢= is the product of two or more
primes, which implies that we may be able to factor out p; from p{* - ... - p%= to obtain pn = ppl(pi”_1 e %),
setting a := pp; and b := p(fl_l - ... - p%s, we have pn = ab. n f a since n = p1b, a = pp1, p is prime, and b > 1;

moreover, n | b since n > b. Nonetheless, n|ab.



0.24

Given fixed integers a, b, and N, with a, b # 0, we are told that (z, yo) is a solution to
ar+by=N (%)

We want to show that for any ¢ € Z, (z¢ + gt, Yo — §t) is also a solution. Observe that

b a ab ba
alzo + &t) +b(yo — Et) = axg + byo + Vi byo — Pk
= axo + byo
=N

= forany t € Z, (zo + 5t,y0 — 4t) is also a solution to (x).

0.2.5

We want to determine the value of ¢(n) for each integer n < 30, where ¢(-) denotes the Euler ¢-function. Recall that

P1s - Ps Prime, X X .
Sp7" - pee) = PP (py = 1) - e T

Therefore,
o(1) =1
$(2) =1
¢(3) =2
¢p(4) =2'(2-1)=2
¢(5) =4
(6) =2°2-1)3°3—-1)=2
P(7) =6
$(8)=2°(2—1) =4
$(9) =3'(3-1)=6
#(10) =2°(2 - 1)5°(5 - 1) =4
#(11) = 10
#(12) =2'(2-1)3°3-1) =4
$(13) = 12
p(14) =2°2 - 1)7°(7-1) =6
#(15) =33 -1)5°(5-1) =8

I will stop here because it is tedious and trivial computing the rest.

0.2.6

Let ) # A C N. We use strong induction to prove that A has a minimal element.

Base Case: Suppose 1 € A. Then clearly 1 is minimal in A.

Induction Hypothesis: Assume there exists some k € {1,2,...,n}, and that A has a minimum element.

Induction Step: Now suppose there is an element k¥ € A such that k € {1,...,n,n 4+ 1}. If & < n, then this case
reduces to the induction hypothesis case, and we are done. If, on the other hand, j ¢ A for any positive integer j < n,
then (n + 1) € A is the minimal element in A.




NOTE: It is clear that if k is minimal in A, then k is the unique minimum in A since m = min(4) < m < z
Va € A; therefore, if k1 and ko are minimal in A, then (k1 < ko A ko < k1) < k1 = ka.

NOTE 2: Using induction yields an “awkward” proof. A much better approach to proving that A has a minimum
element would be by constructing an algorithm, so I will present one here as an alternative proof.

Algorithm 1: MinA
Input: A non-empty set A C N
Output: m, where m is the minimum element of A
1:=1;
if i € A then
| returni;
else
while i ¢ A do
| i=i+ 1
end

return i;
end

Since A C N is non-empty, the algorithm will eventually terminate, and when it does, it will return the minimum
element of A.

0.2.7

Assume for the sake of contradiction that there exists nonzero integers a and b such that a> = pb?, where p is prime.
Let d = gcd(a,b). Then setting A := ¢ and B := g, we have A2 = pB?; thus, there exists relatively prime
integers A and B such that A*> = pB?. Now, p|A? <= p|(A- A) = p|A since p is prime. This implies that
p?|A? < p*pB? = p|B?> <= p|(B- B) = p|B. This contradicts the fact that A and B are relatively prime,

thus implying that there does not that there does not exist nonzero integers a and b such that a? = pb?, for any prime
.
0.2.8

Given p prime and n € N, we want to find a formula for the largest power d of p which divides n!. Observe that since
n! =n(n —1)-...- (2)(1), we obtain atleast one factor of p in n! for each multiple of p in {1,2,...,n}; there are

precisely {%J many multiples. Note, however, if p> < n, then p? contributes atleast one additional factor of p; more
precisely, there are an additional U—;J many factors of p (one for each multiple of p? i {1, 2, ...,n}). We may continue

on in this manner up to any arbitary power of k of p (even when p* > n, since | % | = 0); thus, we have the formula
p

-3 [5]

0.2.9
Omitted.

0.2.10

Let ¢(n) = N forsome n € N. If n = p®* - ... - p%= = [] p;*, where Vi € [s], p; is prime and «;; € N, then we have:
i=1

o) =[] i =) = N



= the largest prime factor n may have is smaller than N + 1, and for each p; there is some positive integer exponent
Bi such that p¥ > N for all positive integers + > [3;. Therefore, there are only finitely many choices of exponents
for the finitely many prime factors of n so that ¢(n) = N. This implies that there are only finitely many n so that

o(n) = N

Now assume for the sake of contradiction that the Euler ¢-function is bounded. Then there exists M € N such that
¢(n) < M Vn € N. Since the codomain of the Euler ¢-function is the set of positive integers, there must exist some
N € [M] such that |¢~1(N)| = oo which contradicts the fact that there are only finitely many n such that ¢(n) = N,
VN € N.
0.2.11

We are told that d|n and we want to show that ¢(d)|¢(n). Since d|n, there exists ¢ € Z such that n = cd. Let
pit - ... p% be the prime factorization of c. Then we have:

p(n) = ¢(cd) = ¢(pi* - ... p2ed) = ' Hp1 — 1) oo p2 T (ps — 1)op(d)
= ¢(d)|¢(n)
0.3

0.3.1
For 0 < k < 17 the residue class [k] of Z/18Z is the set {k £ 18n : n € Z}.

0.3.2

We want to prove that the distinct equivalence classes in Z /nZ are precisely 0, 1, ...,n — 1. First, note that 0, 1, ..., — 1
partition Z, so indeed they are distinct equivalence classes. Now, let a € Z. By the division algorithm, a = ng + r

for some integers ¢ and r with 0 < r < n — 1. Thus, a = r (mod n) = a € 7, which is exactly one of 0,1, ...,n — 1.

Therefore, the distinct equivalence classes of Z/nZ are 0,1, ...,n — 1

0.3.3

Given that ¢ = a,,10" + a,,_110" "1 + ... + a110 + ag, we want to show that ¢ = a,, + ay—1 + ... + a1 + ag (mod
9). Observe that

a=0a,10" +a,_110""1 + ...+ a110 +ag

— @ 10" +a, 510" '+ .. +al0+ag

=a,1" + an_Jn_l +. . 4al+a (since 10 = 1 (mod 9))
=an t+ap—1+...+a1+ag

=>a=a,+a, 1+ ...+ a1 + ap (mod 9).



0.34

We want 37190 (mod 29). First note that 37 = 8 (mod 29) and 8190 = 8648328%; thus, we neet to find 854, 832, and 84,
respectively, (mod 29). Observe that:

8% = 64 = 6 (mod 29)
8* = (82)% = 62 (mod 29)
= 7(mod 29)

8% = (8%)% = 72 (mod 29)
= 20 (mod 29)
= —9 (mod 29)

816 = (8%)? = (—9)? (mod 29)
= 23 (mod 29)
= —6 (mod 29)

832 = (8'%)? = (—6)? (mod 29)
= 7 (mod 29)

804 = (83%)2 = 72 (mod 29)

= —9 (mod 29)
= 37190 = (—9)(7)(7) (mod 29)

= (—63)(7) (mod 29)
= 24(7) (mod 29)

(=5)(7) (mod 29)

= —35 (mod 29)

= 23 (mod 29)

That is, the remainder of 37'%° divided by 29 is 23.

0.3.5

We want to compute the last two digits of 91°°, Note that the remainder after dividing by 100 will give us the last two
digits of the number (becasue by the division algorithm, 91500 — xq + r, where x,q,r € Z and 0 < r < z; in this
case, x = 100 since we are dividing by 100). Recall the binomial formula:

(x+y)" = i: (Z) zky*

k=0



Now,

1,500
91500 _ (10 — 1)1500 — Z (1,200) 10¥ (—1)1500—
k=0
1,500 1,500 1,500
— 101500 _ [+ 101499 . 11 ) 101498 12 _ (5 101 . 11499 4 11,500
0 L0 +( 7y )0 T L 199) 10 +
101500 ¢ ([509) 102 - 11498
=100z — 1,500 - 10 + 1, where = 156*98

=100y + 1, where y = x — 150

Dividing 9599 by 100, we have y + 155 = .01 = 9150 = 01 = the last two digits are: 01.

0.3.6

7./47 = {0,1,2,3}. Now, 02 = 0, 1! = 1,22 = 4 = 0 (mod 4), and 3% = 9 = 1 (mod 4); hence, the only squares in
Z/AZ are 0 and 1.

0.3.7

a? + b% (mod 4) equals either 0, 1, or 2 since from the previous problem we know that a? and b? are congruent (mod
4) to either 0 or 1. Therefore, a? + b2 never elaves a remainder of 3 after being divided by 4.

0.3.8

We want to show that a2 + b = 3¢? has no nonzero solutions. Assume for the sake of contradiction that there exists
a nonzero solution (a’, %, c?) € Z3 to the equation a? + b? = 3c2. Without loss of generality we may assume that
a®, 1%, 0 > 0 since (a®)2 = [a®[2, ()2 = [°|2, and (c°)2 = |c°2.

I claim that ¢ must be even. To see this, observe that if ¢? is odd, then by 0.3.6, ¢® = 1 (mod 4), which implies
that a® + b?> = 3 (mod 4); this is impossible by 0.3.7. Thus, ¢? is even, and by 0.3.6, ¢> = 0 (mod 4) = a® + b*> =0
(mod 4). Moreover, from 0.3.6, a? and b? are congruent (mod 4) to either 0 or 1; a® + b = 0 (mod 4) implies that a2,
b? = 0 (mod 4) = a and b are even. Now, a, b, and c even implies that a2, b2, and ¢? are divisible by 4. Therefore, we
may divide both sides of the equation a? + b? = 3¢? by 4 and obtain a solution to the resulting equation (which is still
of the form a? + b? = 3c?) that is strictly smaller than (a°, b°, ¢”); namely, (a', b}, c!) = (“2—0, %, %)

Since we assumed nothing about a, b, and ¢ (other than that they are positive), we may repeat this process indefi-
nitely, contradicting the well-ordering princple.

0.3.9

Let z be an odd integer. Then there exists & € Z such that z = 2k+1 = 22 = (2k+1)? = 4k?>+4k+1 = 4k(k+1)+1.
The product of two consecutive integers is even, which implies there exists m € Z such that 22 = 4(2m) + 1 =
8m + 1 = 22 = 1 (mod 8); i.e., z leaves a remainder of 1 after being divided by 8.

0.3.10

We want to show that |(Z/nZ)*| = ¢(n); i.e., we want to show that |(Z/nZ)*| = |{a € Z/nZ : ged(a,n) = 1}|.
Recall that (Z/nZ)* = {a € Z/nZ : 3a € Z/nz st.a-¢ = 1}. Now, ged(a,n) =1 <= 3Jz,y € Z such that
ar+ny =1 <= ax =1 (mod n). If x < n, we are done. If not, then ax = ar (mod n), where r := the remainder
after dividing = by n; r < n. Thus, ged(a,n) = 1 <= a has a multiplicative inverse in Z/nZ, or equivalently,

((Z/nZ)*| = é(n).



0.3.11

Given that ¢ and b are relatively prime to n, we want to show that ab is relatively prime to n. a and b relatively prime
to n implies that there exists =, z’, y, 3’ € Z such that
ar +ny =1=bz +ny
= (az +ny) (b’ +ny') =1
< azxbzr’ + azny’ + nybs’ +nlyy’ =1
= abzz’ = 1 (mod n)
.3y € Z/ 7 such that (ab)y = 1 (mod n) = ged(ab,n) = 1; i.e., ab and n are relatively prime.

0.3.12

We aregiven integers n and a such that n > 1, 1 < a < n, and ged(a,n) = d > 1. First we want to show that
there exists b € Z such that 1 < b < n and ab = 0 (mod n). Set b := %. Then observe that 1 < % < n and
ab = kd - % = kn = 0 (mod n), since a = kd for some k € Z.

Now assume for the sake of contradiction that there exists ¢ € Z such that ac = 1 (mod n). Then ac = 1 (mod n)
<= abc=b(modn) <= 0 = b (mod n), which is a contradiction since 0 < b = & < n (mod n).

0.3.13

By the Euclidean algorithm, gcd(a,n) =1 = Jz,y € Zsuchthatar +ny =1 < ny=1—azr < ax =1
(mod n), hence there exists some ¢ € Z such that ac = 1 (mod n); namely, ¢ = x.

0.3.14

Observe that 0.3.13 implies that (Z/nZ)* is a superset of the set {a@ € Z/nZ : gcd(a,n) = 1}, and 0.3.12 implies
(Z/nZ)* does not contain any elements in the complement of {@ € Z/nZ : gcd(a,n) = 1}, hence (Z/nZ)* = {a €
Z/nZ : ged(a,n) = 1}. As an example, consider (Z/127Z)*. 1 has multiplicative inverse 1, 5 has multiplicative
inverse 5, 7 has multiplicative inverse 7, and 11 has multiplicative inverse 11; only these numbers have multiplicative
inverses in Z /127, hence (Z/127)* = {1,5,7,11}, and these are precisely the integers relatively prime to 12.

0.3.15
(a)
20=1(13) +7
13=1(7)+6
6 =16(1)
= gcd(20, 13) = 1; that is, 20 and 13 are relatively prime.
1=7-1(6)
— [13—1(6)] - 1(6)
=13 — 2(6)
=13 —2[13 — 1(7)]
=2(7) — 1(13)

= 2[20 — 1(13)] — 1(13)
= 2(20) — 3(13)

= 2(20) = 1+ 3(13) = 20|[1 + 3(13)] = —3(13) = 1 (mod 20) = —3 = 17 (mod 20) is the multiplicative
inverse of 13 in Z/20z.



(b)

89 = 1(69) + 20
69 = 3(20) + 9
20 = 2(9) + 2
9=4(2)+1
2 =2(1)

= gcd(89,69) = 1; that is, 89 and 69 are relatively prime.
1=9-14(2)

=9 —4[20 — 2(9)]

= 9(9) — 4(20)

= 969 — 3(20)] — 4(20)

= 9(69) — 31(20)

= 9(69) — 31(89 — 69)
40(69) — 31(89)
= —31(89) = 1 —40(69) = 89|[1 — 40(69)] = 40(69) = 1 (mod 89) = 40 is the multiplicative inverse of 69
in Z/ggz.

Parts (c) and (d) are omitted because they are analogous to (a) and (b)

0.3.16

Onmitted.
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