Solutions to Problems in Abstract Algebra by Dummit and Foote (Chapter 0)

Isaac Dobes

0

0.1

0.1.1

Using the result from exercise 0.1.4 below, we conclude that $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in \mathcal{B}$.

0.1.2

Recall that matrix multiplication is distributive. Therefore, $P, Q \in \mathcal{B} \Longleftrightarrow M P=P M, M Q=Q M \Rightarrow M(P+$ $Q)=M P+M Q=P M+Q M=(P+Q) M \Rightarrow P+Q \in \mathcal{B}$.

0.1.3

Recall that matrix multiplication is associative. Therefore, $P, Q \in \mathcal{B} \Longleftrightarrow M P=P M, M Q=Q M \Rightarrow M(P \cdot Q)=$ $(M \cdot P) Q=(P \cdot M) Q=P(M \cdot Q)=P(Q \cdot M)=(P \cdot Q) M \Rightarrow P \cdot Q \in \mathcal{B}$.

0.1.4

$\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \in \mathcal{B} \Longleftrightarrow\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \cdot\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \Longleftrightarrow\left(\begin{array}{cc}p+r & q+s \\ r & s\end{array}\right)=\left(\begin{array}{ll}p & p+q \\ r & r+s\end{array}\right) \Longleftrightarrow$ $\left\{\begin{array}{l}p+r=p \\ q+s=p+q \\ r=r \\ s=r+s\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}r=0 \\ s=p\end{array}\right\}$

0.1.5

(a) There is some ambiguity in this question. Some define \mathbb{Q} as $\left\{\frac{a}{a}: a, b \in \mathbb{Z}, b \neq 0\right.$, and a and b have no common divisors $\}$; in this case, $\frac{1}{2} \in \mathbb{Q}$, whereas $\frac{2}{4} \notin \mathbb{Q}$. If we accept this definition, then $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined as $f\left(\frac{a}{b}\right)=a$ is in fact well-defined since every rational number is uniquely determined by its numerator and denominator. If, however, we define \mathbb{Q} as $\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$, then $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined as $f\left(\frac{a}{b}\right)=a$ is undefined since $\frac{1}{2}=\frac{2}{4}$, but $1=f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right)=2$. Note that the book defines \mathbb{Q} in the second way, so this is the answer I believe they are looking for; nonetheless, I think it is better to define \mathbb{Q} in the first way.
(b) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined as $f\left(\frac{a}{b}\right)=\frac{a^{2}}{b^{2}}$ is well-defined because if $\frac{a}{b}=\frac{c}{d}$, then $f\left(\frac{a}{b}\right)=\frac{a^{2}}{b^{2}}=\left(\frac{a}{b}\right)^{2}=\left(\frac{c}{d}\right)^{2}=f\left(\frac{c}{d}\right)$.

0.1.6

The function $f: \mathbb{R}^{+} \rightarrow \mathbb{Z}$ which maps a positive real number r to the first digit to the right of the decimal point in a decimal expansion of r is not well-defined since $0.999 \ldots=1.000 \ldots$, but $9=f(0.999 \ldots) \neq f(1.000 \ldots)=0$.

0.1.7

Given a surjective function $f: A \rightarrow B$, we want to prove that the relation \sim on $A \times A$ defined as $a \sim b \Longleftrightarrow f(a)=$ $f(b)$ is an equivalent relation. Observe that:
(a) $a \sim a \Longleftrightarrow f(a)=f(a)$, which indeed is always true (assuming f is a well-defined function); hence \sim is reflexive
(b) $a \sim b \Longleftrightarrow f(a)=f(b) \Longleftrightarrow f(b)=f(a) \Longleftrightarrow b \sim a$; hence, \sim is symmetric
(c) $a \sim b, b \sim c \Longleftrightarrow f(a)=f(b), f(b)=f(c) \Longleftrightarrow f(a)=f(b)=f(c) \Rightarrow f(a)=f(b) \Longleftrightarrow a \sim c$

Therefore, \sim is an equivalence relation. Now, if $[a]$ is an equivalence class of \sim, then $b \in[a] \Longleftrightarrow b \in A$ such that $f(a)=f(b) \Rightarrow[a]=f^{-1}(a)$; hence, the equivalence classes of \sim are the fibers of f.

0.2

0.2.1
(a)

$$
\begin{aligned}
20 & =1(13)+17 \\
13 & =1(7)+6 \\
7 & =1(6)+1 \\
6 & =6(1)
\end{aligned}
$$

$\Rightarrow \operatorname{gcd}(20,13)=1$. Since 20 and 13 are relatively prime, $\operatorname{lcm}(20,13)=20(13)=260$. Working backwards, we see that:

$$
\begin{aligned}
1 & =7-1(6) \\
& =7-1[13-1(7)] \\
& =2(7)-13 \\
& =2[20-1(13)]-13 \\
& =2(20)-3(13)
\end{aligned}
$$

$$
\Rightarrow \operatorname{gcd}(20,13)=2(20)-3(13)
$$

(b)

$$
\begin{aligned}
372 & =5(69)+27 \\
69 & =2(27)+15 \\
27 & =1(15)+12 \\
15 & =1(12)+3 \\
12 & =4(3)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{gcd}(372,69)=3 . \operatorname{lcm}(372,69)=\frac{372(69)}{\operatorname{gcd}(372,69)}=\frac{25,668}{3}=8,556 . \text { Working backwards, we see that: } \\
& \qquad \begin{aligned}
3 & =15-1(12) \\
& =15-1(27-15) \\
& =2(15)-27 \\
& =2[69-2(27)]-27 \\
& =2(69)-5(27) \\
& =2(69)-5[372-5(69)] \\
& =27(69)-5(372)
\end{aligned} \\
& \Rightarrow \operatorname{gcd}(372,69)=(-5) 372+(27) 69 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
792 & =2(275)+242 \\
275 & =1(242)+33 \\
242 & =7(33)+11 \\
33 & =3(11)
\end{aligned}
$$

$\Rightarrow \operatorname{gcd}(792,275)=11$. Now, $\operatorname{lcm}(792,275)=\frac{792(275)}{\operatorname{gcd}(792,275)}=\frac{217,800}{11}=19,800$. Working backwards, we see that:

$$
\begin{aligned}
11 & =242-7(33) \\
& =242-7[275-1(242)] \\
& =8(242)-7(275) \\
& =8[792-2(275)]-7(275) \\
& =8(792)-23(275)
\end{aligned}
$$

$\Rightarrow \operatorname{gcd}(792,275)=8(792)-23(275)$.
(d) Omitted.
(e) Omitted.

Parts (d) and (e) are omitted because they are analogous to (a), (b), and (c).

0.2.2

We are told that $k \mid a$ and $k \mid b$, and we want to show that $k \mid(a s+b t)$. Since $k \mid a$, there exists $c \in \mathbb{Z}$ such that $a=k c$; similarly, $k \mid b$ implies that there exists $d \in \mathbb{Z}$ such that $b=k d$. Therefore,

$$
a s+b t=k c s+k d t=k(c s+d t)
$$

$\Rightarrow k \mid(a s+b t)$.

0.2.3

We are told that n is composite and we want to show that there exists integers a and b such that $n \mid a b$ but $n \nmid a$ and $n \nmid b$. Now, $n=p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$, where $s \geq 1, \alpha_{i} \geq 1 \forall i \in[s]$, and p_{1}, \ldots, p_{s} are prime. Let p be a prime number such that $p \notin\left\{p_{1}, \ldots, p_{s}\right\}$. Then $p n=p\left(p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}\right)$. Since n is composite, $p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ is the product of two or more primes, which implies that we may be able to factor out p_{1} from $p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ to obtain $p n=p p_{1}\left(p_{1}^{\alpha_{1}-1} \cdot \ldots \cdot p_{s}^{\alpha_{s}}\right)$; setting $a:=p p_{1}$ and $b:=p_{1}^{\alpha_{1}-1} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$, we have $p n=a b$. $n \nmid a$ since $n=p_{1} b, a=p p_{1}, p$ is prime, and $b>1$; moreover, $n \nmid b$ since $n>b$. Nonetheless, $n \mid a b$.

0.2.4

Given fixed integers a, b, and N, with $a, b \neq 0$, we are told that $\left(x_{0}, y_{0}\right)$ is a solution to

$$
a x+b y=N
$$

We want to show that for any $t \in \mathbb{Z},\left(x_{0}+\frac{b}{d} t, y_{0}-\frac{a}{d} t\right)$ is also a solution. Observe that

$$
\begin{aligned}
a\left(x_{0}+\frac{b}{d} t\right)+b\left(y_{0}-\frac{a}{d} t\right) & =a x_{0}+b y_{0}+\frac{a b}{d} t+b y_{0}-\frac{b a}{d} t \\
& =a x_{0}+b y_{0} \\
& =N
\end{aligned}
$$

\Rightarrow for any $t \in \mathbb{Z},\left(x_{0}+\frac{b}{d} t, y_{0}-\frac{a}{d} t\right)$ is also a solution to (\star).

0.2 .5

We want to determine the value of $\phi(n)$ for each integer $n \leq 30$, where $\phi(\cdot)$ denotes the Euler ϕ-function. Recall that p_{1}, \ldots, p_{s} prime,

$$
\phi\left(p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}\right)=p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) \cdot \ldots \cdot p_{s}^{\left.\alpha_{s}-1\right)\left(p_{s}-1\right)}
$$

Therefore,

$$
\begin{aligned}
\phi(1) & =1 \\
\phi(2) & =1 \\
\phi(3) & =2 \\
\phi(4) & =2^{1}(2-1)=2 \\
\phi(5) & =4 \\
\phi(6) & =2^{0}(2-1) 3^{0}(3-1)=2 \\
\phi(7) & =6 \\
\phi(8) & =2^{2}(2-1)=4 \\
\phi(9) & =3^{1}(3-1)=6 \\
\phi(10) & =2^{0}(2-1) 5^{0}(5-1)=4 \\
\phi(11) & =10 \\
\phi(12) & =2^{1}(2-1) 3^{0}(3-1)=4 \\
\phi(13) & =12 \\
\phi(14) & =2^{0}(2-1) 7^{0}(7-1)=6 \\
\phi(15) & =3^{0}(3-1) 5^{0}(5-1)=8
\end{aligned}
$$

I will stop here because it is tedious and trivial computing the rest.

0.2.6

Let $\emptyset \neq A \subset \mathbb{N}$. We use strong induction to prove that A has a minimal element.
Base Case: Suppose $1 \in A$. Then clearly 1 is minimal in A.
Induction Hypothesis: Assume there exists some $k \in\{1,2, \ldots, n\}$, and that A has a minimum element.
Induction Step: Now suppose there is an element $k \in A$ such that $k \in\{1, \ldots, n, n+1\}$. If $k \leq n$, then this case reduces to the induction hypothesis case, and we are done. If, on the other hand, $j \notin A$ for any positive integer $j \leq n$, then $(n+1) \in A$ is the minimal element in A.

NOTE: It is clear that if k is minimal in A, then k is the unique minimum in A since $m=\min (A) \Longleftrightarrow m \leq x$ $\forall x \in A$; therefore, if k_{1} and k_{2} are minimal in A, then $\left(k_{1} \leq k_{2} \wedge k_{2} \leq k_{1}\right) \Longleftrightarrow k_{1}=k_{2}$.
NOTE 2: Using induction yields an "awkward" proof. A much better approach to proving that A has a minimum element would be by constructing an algorithm, so I will present one here as an alternative proof.

```
Algorithm 1: MinA
    Input: A non-empty set \(A \subset \mathbb{N}\)
    Output: \(m\), where \(m\) is the minimum element of \(A\)
    \(i:=1\);
    if \(i \in A\) then
        return i;
    else
        while \(i \notin A\) do
            \(i:=i+1 ;\)
            end
        return i;
    end
```

Since $A \subset \mathbb{N}$ is non-empty, the algorithm will eventually terminate, and when it does, it will return the minimum element of A.

0.2.7

Assume for the sake of contradiction that there exists nonzero integers a and b such that $a^{2}=p b^{2}$, where p is prime. Let $d=\operatorname{gcd}(a, b)$. Then setting $A:=\frac{a}{d}$ and $B:=\frac{b}{d}$, we have $A^{2}=p B^{2}$; thus, there exists relatively prime integers A and B such that $A^{2}=p B^{2}$. Now, $p\left|A^{2} \Longleftrightarrow p\right|(A \cdot A) \Rightarrow p \mid A$ since p is prime. This implies that $p^{2}\left|A^{2} \Longleftrightarrow p^{2}\right| p B^{2} \Rightarrow p\left|B^{2} \Longleftrightarrow p\right|(B \cdot B) \Rightarrow p \mid B$. This contradicts the fact that A and B are relatively prime, thus implying that there does not that there does not exist nonzero integers a and b such that $a^{2}=p b^{2}$, for any prime p.

0.2.8

Given p prime and $n \in \mathbb{N}$, we want to find a formula for the largest power d of p which divides $n!$. Observe that since $n!=n(n-1) \cdot \ldots \cdot(2)(1)$, we obtain atleast one factor of p in $n!$ for each multiple of p in $\{1,2, \ldots, n\}$; there are precisely $\left\lfloor\frac{n}{p}\right\rfloor$ many multiples. Note, however, if $p^{2}<n$, then p^{2} contributes atleast one additional factor of p; more precisely, there are an additional $\left\lfloor\frac{n}{p^{2}}\right\rfloor$ many factors of p (one for each multiple of $p^{2} \mathrm{i}\{1,2, \ldots, n\}$). We may continue on in this manner up to any arbitary power of k of p (even when $p^{k}>n$, since $\left\lfloor\frac{n}{p^{k}}\right\rfloor=0$); thus, we have the formula

$$
d=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor
$$

0.2.9

Omitted.
0.2.10

Let $\phi(n)=N$ for some $n \in \mathbb{N}$. If $n=p^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$, where $\forall i \in[s], p_{i}$ is prime and $\alpha_{i} \in \mathbb{N}$, then we have:

$$
\phi(n)=\prod_{i=1}^{s} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)=N
$$

\Rightarrow the largest prime factor n may have is smaller than $N+1$, and for each p_{i} there is some positive integer exponent β_{i} such that $p_{i}^{x}>N$ for all positive integers $x \geq \beta_{i}$. Therefore, there are only finitely many choices of exponents for the finitely many prime factors of n so that $\phi(n)=N$. This implies that there are only finitely many n so that $\phi(n)=N$

Now assume for the sake of contradiction that the Euler ϕ-function is bounded. Then there exists $M \in \mathbb{N}$ such that $\phi(n) \leq M \forall n \in \mathbb{N}$. Since the codomain of the Euler ϕ-function is the set of positive integers, there must exist some $N \in[M]$ such that $\left|\phi^{-1}(N)\right|=\infty$ which contradicts the fact that there are only finitely many n such that $\phi(n)=N$, $\forall N \in \mathbb{N}$.

0.2.11

We are told that $d \mid n$ and we want to show that $\phi(d) \mid \phi(n)$. Since $d \mid n$, there exists $c \in \mathbb{Z}$ such that $n=c d$. Let $p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}}$ be the prime factorization of c. Then we have:

$$
\phi(n)=\phi(c d)=\phi\left(p_{1}^{\alpha_{1}} \cdot \ldots \cdot p_{s}^{\alpha_{s}} d\right)=p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) \cdot \ldots \cdot p_{s}^{\alpha_{s}-1}\left(p_{s}-1\right) \phi(d)
$$

$\Rightarrow \phi(d) \mid \phi(n)$

0.3

0.3.1

For $0 \leq k \leq 17$ the residue class $[k]$ of $\mathbb{Z} / 18 \mathbb{Z}$ is the set $\{k \pm 18 n: n \in \mathbb{Z}\}$.

0.3.2

We want to prove that the distinct equivalence classes in $\mathbb{Z} / n \mathbb{Z}$ are precisely $\overline{0}, \overline{1}, \ldots, \overline{n-1}$. First, note that $\overline{0}, \overline{1}, \ldots, \overline{n-1}$ partition \mathbb{Z}, so indeed they are distinct equivalence classes. Now, let $a \in \mathbb{Z}$. By the division algorithm, $a=n q+r$ for some integers q and r with $0 \leq r \leq n-1$. Thus, $a \equiv r(\bmod n) \Rightarrow a \in \bar{r}$, which is exactly one of $\overline{0}, \overline{1}, \ldots, \overline{n-1}$. Therefore, the distinct equivalence classes of $\mathbb{Z} / n \mathbb{Z}$ are $\overline{0}, \overline{1}, \ldots, \overline{n-1}$

0.3.3

Given that $a=a_{n} 10^{n}+a_{n-1} 10^{n-1}+\ldots+a_{1} 10+a_{0}$, we want to show that $a \equiv a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}(\bmod$ 9). Observe that

$$
\begin{aligned}
\bar{a} & =\overline{a_{n} 10^{n}}+\overline{a_{n-1} 10^{n-1}}+\ldots+\overline{a_{1} 10}+\overline{a_{0}} \\
& ={\overline{a_{n}}}^{10}{ }^{n}+\overline{a_{n-1}} \overline{10}^{n-1}+\ldots+\overline{a_{1}} \overline{10}+\overline{a_{0}} \\
& ={\overline{a_{n}}}^{n}+{\overline{a_{n-1}}}^{n} \overline{1}^{n-1}+\ldots+\overline{a_{1}} \overline{1}+\overline{a_{0}} \quad(\text { since } 10 \equiv 1(\bmod 9)) \\
& =\overline{a_{n}}+\overline{a_{n-1}}+\ldots+\overline{a_{1}}+\overline{a_{0}}
\end{aligned}
$$

$$
\Rightarrow a \equiv a_{n}+a_{n-1}+\ldots+a_{1}+a_{0}(\bmod 9)
$$

0.3.4

We want $37^{100}(\bmod 29)$. First note that $37 \equiv 8(\bmod 29)$ and $8^{100}=8^{64} 8^{32} 8^{4}$; thus, we neet to find $8^{64}, 8^{32}$, and 8^{4}, respectively, $(\bmod 29)$. Observe that:

$$
\begin{aligned}
8^{2}=64 & \equiv 6(\bmod 29) \\
8^{4}=\left(8^{2}\right)^{2} & \equiv 6^{2}(\bmod 29) \\
& \equiv 7(\bmod 29)
\end{aligned}
$$

$$
\begin{aligned}
8^{8}=\left(8^{4}\right)^{2} & \equiv 7^{2}(\bmod 29) \\
& \equiv 20(\bmod 29) \\
& \equiv-9(\bmod 29)
\end{aligned}
$$

$$
\begin{aligned}
8^{16}=\left(8^{8}\right)^{2} & \equiv(-9)^{2}(\bmod 29) \\
& \equiv 23(\bmod 29) \\
& \equiv-6(\bmod 29)
\end{aligned}
$$

$$
\begin{aligned}
8^{32}=\left(8^{16}\right)^{2} & \equiv(-6)^{2}(\bmod 29) \\
& \equiv 7(\bmod 29)
\end{aligned}
$$

$$
\begin{aligned}
8^{64}=\left(8^{32}\right)^{2} & \equiv 7^{2}(\bmod 29) \\
& \equiv-9(\bmod 29) \\
\Rightarrow 37^{100} & \equiv(-9)(7)(7)(\bmod 29) \\
& \equiv(-63)(7)(\bmod 29) \\
& \equiv 24(7)(\bmod 29) \\
& \equiv(-5)(7)(\bmod 29) \\
& \equiv-35(\bmod 29) \\
& \equiv 23(\bmod 29)
\end{aligned}
$$

That is, the remainder of 37^{100} divided by 29 is 23 .

0.3.5

We want to compute the last two digits of 9^{1500}. Note that the remainder after dividing by 100 will give us the last two digits of the number (becasue by the division algorithm, $9^{1500}=x q+r$, where $x, q, r \in \mathbb{Z}$ and $0 \leq r<x$; in this case, $x=100$ since we are dividing by 100). Recall the binomial formula:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Now,

$$
\begin{aligned}
9^{1,500}=(10-1)^{1,500} & =\sum_{k=0}^{1,500}\binom{1,500}{k} 10^{k}(-1)^{1,500-k} \\
& =10^{1,500}-\binom{1,500}{1} 10^{1,499} \cdot 1^{1}+\binom{1,500}{2} 10^{1,498} \cdot 1^{2} \mp \ldots-\binom{1,500}{1,499} 10^{1} \cdot 1^{1,499}+1^{1,500} \\
& =100 x-1,500 \cdot 10+1, \text { where } x=\frac{10^{1,500} \mp \ldots+\binom{1,500}{1,498} 10^{2} \cdot 1^{1,498}}{100} \\
& =100 y+1, \text { where } y=x-150
\end{aligned}
$$

Dividing $9^{1,500}$ by 100 , we have $y+\frac{1}{100}=y .01 \Rightarrow 9^{1,500}=y 01 \Rightarrow$ the last two digits are: 01 .

0.3.6

$\mathbb{Z} / 4 \mathbb{Z}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Now, $0^{2}=0,1^{1}=1,2^{2}=4 \equiv 0(\bmod 4)$, and $3^{2}=9 \equiv 1(\bmod 4)$; hence, the only squares in $\mathbb{Z} / 4 \mathbb{Z}$ are $\overline{0}$ and $\overline{1}$.

0.3.7

$a^{2}+b^{2}(\bmod 4)$ equals either 0,1 , or 2 since from the previous problem we know that a^{2} and b^{2} are congruent (mod 4) to either 0 or 1 . Therefore, $a^{2}+b^{2}$ never elaves a remainder of 3 after being divided by 4 .

0.3 .8

We want to show that $a^{2}+b^{2}=3 c^{2}$ has no nonzero solutions. Assume for the sake of contradiction that there exists a nonzero solution $\left(a^{0}, b^{0}, c^{0}\right) \in \mathbb{Z}^{3}$ to the equation $a^{2}+b^{2}=3 c^{2}$. Without loss of generality we may assume that $a^{0}, b^{0}, c^{0}>0$ since $\left(a^{0}\right)^{2}=\left|a^{0}\right|^{2},\left(b^{0}\right)^{2}=\left|b^{0}\right|^{2}$, and $\left(c^{0}\right)^{2}=\left|c^{0}\right|^{2}$.

I claim that c^{2} must be even. To see this, observe that if c^{2} is odd, then by $0.3 .6, c^{2} \equiv 1(\bmod 4)$, which implies that $a^{2}+b^{2} \equiv 3(\bmod 4)$; this is impossible by 0.3 .7 . Thus, c^{2} is even, and by $0.3 .6, c^{2} \equiv 0(\bmod 4) \Rightarrow a^{2}+b^{2} \equiv 0$ $(\bmod 4)$. Moreover, from 0.3.6, a^{2} and b^{2} are congruent $(\bmod 4)$ to either 0 or $1 ; a^{2}+b^{2} \equiv 0(\bmod 4)$ implies that a^{2}, $b^{2} \equiv 0(\bmod 4) \Rightarrow a$ and b are even. Now, a, b, and c even implies that a^{2}, b^{2}, and c^{2} are divisible by 4 . Therefore, we may divide both sides of the equation $a^{2}+b^{2}=3 c^{2}$ by 4 and obtain a solution to the resulting equation (which is still of the form $\left.a^{2}+b^{2}=3 c^{2}\right)$ that is strictly smaller than $\left(a^{0}, b^{0}, c^{0}\right)$; namely, $\left(a^{1}, b^{1}, c^{1}\right)=\left(\frac{a^{0}}{2}, \frac{b^{0}}{2}, \frac{c^{0}}{2}\right)$.

Since we assumed nothing about a, b, and c (other than that they are positive), we may repeat this process indefinitely, contradicting the well-ordering princple.

0.3.9

Let z be an odd integer. Then there exists $k \in \mathbb{Z}$ such that $z=2 k+1 \Rightarrow z^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1$. The product of two consecutive integers is even, which implies there exists $m \in \mathbb{Z}$ such that $z^{2}=4(2 m)+1=$ $8 m+1 \Rightarrow z^{2} \equiv 1(\bmod 8) ;$ i.e., z leaves a remainder of 1 after being divided by 8 .

0.3.10

We want to show that $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\phi(n)$; i.e., we want to show that $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=|\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}|$. Recall that $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}: \exists \bar{a} \in \mathbb{Z} / n \mathbb{Z}$ s.t. $\bar{a} \cdot \bar{c}=\overline{1}\}$. Now, $\operatorname{gcd}(a, n)=1 \Longleftrightarrow \exists x, y \in \mathbb{Z}$ such that $a x+n y=1 \Longleftrightarrow a x \equiv 1(\bmod n)$. If $x<n$, we are done. If not, then $a x \equiv a r(\bmod n)$, where $r:=$ the remainder after dividing x by $\mathrm{n} ; r<n$. Thus, $\operatorname{gcd}(a, n)=1 \Longleftrightarrow a$ has a multiplicative inverse in $\mathbb{Z} / n \mathbb{Z}$, or equivalently, $\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\phi(n)$.

0.3.11

Given that a and b are relatively prime to n, we want to show that $a b$ is relatively prime to n. a and b relatively prime to n implies that there exists $x, x^{\prime}, y, y^{\prime} \in \mathbb{Z}$ such that

$$
\begin{gathered}
a x+n y=1=b x^{\prime}+n y^{\prime} \\
\Rightarrow(a x+n y)\left(b x^{\prime}+n y^{\prime}\right)=1 \\
\Longleftrightarrow a x b x^{\prime}+a x n y^{\prime}+n y b x^{\prime}+n^{2} y y^{\prime}=1 \\
\Rightarrow a b x x^{\prime} \equiv 1(\bmod \mathrm{n})
\end{gathered}
$$

$\therefore \exists y \in \mathbb{Z} /{ }_{n \mathbb{Z}}$ such that $(a b) y \equiv 1(\bmod \mathrm{n}) \Rightarrow \operatorname{gcd}(a b, n)=1$; i.e., $a b$ and n are relatively prime.

0.3.12

We aregiven integers n and a such that $n>1,1 \leq a<n$, and $\operatorname{gcd}(a, n)=d>1$. First we want to show that there exists $b \in \mathbb{Z}$ such that $1 \leq b<n$ and $a b \equiv 0(\bmod n)$. Set $b:=\frac{n}{d}$. Then observe that $1 \leq \frac{n}{d}<n$ and $a b=k d \cdot \frac{n}{d}=k n \equiv 0(\bmod \mathrm{n})$, since $a=k d$ for some $k \in \mathbb{Z}$.

Now assume for the sake of contradiction that there exists $c \in \mathbb{Z}$ such that $a c \equiv 1(\bmod \mathrm{n})$. Then $a c \equiv 1(\bmod \mathrm{n})$ $\Longleftrightarrow a b c \equiv b(\bmod \mathrm{n}) \Longleftrightarrow 0 \equiv b(\bmod \mathrm{n})$, which is a contradiction since $0<b=\frac{n}{d}<n(\bmod \mathrm{n})$.

0.3.13

By the Euclidean algorithm, $\operatorname{gcd}(a, n)=1 \Rightarrow \exists x, y \in \mathbb{Z}$ such that $a x+n y=1 \Longleftrightarrow n y=1-a x \Longleftrightarrow a x \equiv 1$ $(\bmod \mathrm{n})$, hence there exists some $c \in \mathbb{Z}$ such that $a c \equiv 1(\bmod \mathrm{n}) ;$ namely, $c=x$.

0.3.14

Observe that 0.3 .13 implies that $(\mathbb{Z} / n \mathbb{Z})^{\times}$is a superset of the set $\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}$, and 0.3 .12 implies $(\mathbb{Z} / n \mathbb{Z})^{\times}$does not contain any elements in the complement of $\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}$, hence $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in$ $\mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}$. As an example, consider $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$. 1 has multiplicative inverse 1,5 has multiplicative inverse 5,7 has multiplicative inverse 7 , and 11 has multiplicative inverse 11 ; only these numbers have multiplicative inverses in $\mathbb{Z} / 12 \mathbb{Z}$, hence $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{1,5,7,11\}$, and these are precisely the integers relatively prime to 12 .

0.3.15

(a)

$$
\begin{aligned}
20 & =1(13)+7 \\
13 & =1(7)+6 \\
6 & =6(1)
\end{aligned}
$$

$\Rightarrow \operatorname{gcd}(20,13)=1$; that is, 20 and 13 are relatively prime.

$$
\begin{aligned}
1 & =7-1(6) \\
& =[13-1(6)]-1(6) \\
& =13-2(6) \\
& =13-2[13-1(7)] \\
& =2(7)-1(13) \\
& =2[20-1(13)]-1(13) \\
& =2(20)-3(13)
\end{aligned}
$$

$\Rightarrow 2(20)=1+3(13) \Rightarrow 20 \mid[1+3(13)] \Rightarrow-3(13) \equiv 1(\bmod 20) \Rightarrow-3 \equiv 17(\bmod 20)$ is the multiplicative inverse of 13 in $\mathbb{Z} / 20 \mathbb{Z}$.
(b)

$$
\begin{aligned}
89 & =1(69)+20 \\
69 & =3(20)+9 \\
20 & =2(9)+2 \\
9 & =4(2)+1 \\
2 & =2(1)
\end{aligned}
$$

$\Rightarrow \operatorname{gcd}(89,69)=1$; that is, 89 and 69 are relatively prime.

$$
\begin{aligned}
1 & =9-4(2) \\
& =9-4[20-2(9)] \\
& =9(9)-4(20) \\
& =9[69-3(20)]-4(20) \\
& =9(69)-31(20) \\
& =9(69)-31(89-69) \\
& =40(69)-31(89)
\end{aligned}
$$

$\Rightarrow-31(89)=1-40(69) \Rightarrow 89 \mid[1-40(69)] \Rightarrow 40(69) \equiv 1(\bmod 89) \Rightarrow 40$ is the multiplicative inverse of 69 in $\mathbb{Z} / 89 \mathbb{Z}$.

Parts (c) and (d) are omitted because they are analogous to (a) and (b)
0.3.16

Omitted.

